The SI Metric System of Units and SPE METRIC STANDARD

Society of Petroleum Engineers

The SI Metric System of Units and SPE METRIC STANDARD

Society of Petroleum Engineers

Adopted for use as a voluntary standard by the SPE Board of Directors, June 1982.

Contents

Preface 2
Part 1: SI - The International System of Units 2
Introduction 2
SI Units and Unit Symbols 2
Application of the Metric System 3
Rules for Conversion and Rounding 5
Special Terms and Quantities Involving Mass and Amount of Substance 7
Mental Guides for Using Metric Units 8
Appendix A (Terminology) 8
Appendix B (SI Units) 9
Appendix C (Style Guide for Metric Usage) 11
Appendix D (General Conversion Factors) 14
Appendix E (Tables 1.8 and 1.9) 20
Part 2: Discussion of Metric Unit Standards 21
Introduction 21
Review of Selected Units 22
Unit Standards Under Discussion 24
Notes for Table 2.2 25
Notes for Table 2.3 25

Second Printing

June 1984

Copyright 1984, Society of Petroleum Engineers of AIME. Printed in U.S.A. This publication or any parts thereof may not be reproduced by any means without the prior written permission of the publisher: Society of Petroleum Engineers, P.O. Box 833836, Richardson, TX 75083-3836. Contact the publisher for additional copies, individual or in bulk, of this publication.

Preface

The SPE Board in June 1982 endorsed revisions to "SPE Tentative Metric Standard" (Dec. 1977 JPT, Pages 1575-1611) and adopted it for implementation as this "SPE Metric Standard."

The following standard is the final product of 12 years' work by the Symbols and Metrication Committee. Members of the current Metrication Subcommittee include John M. Campbell, chairman, John M. Campbell \& Co.; Robert A. Campbell, Magnum Engineering Inc.; Robert E. Carlile, Texas Tech U.; J. Donald Clark, petroleum consultant; Hank Groeneveld, Mobil Oil Canada; Terry Pollard, retired, ex-officio member; and Howard B. Bradley, professional/technical training consultant.

With very few exceptions, the units shown are those
proposed and/or adopted by other groups involved in the metrication exercise, including those agencies charged with the responsibility (nationally and internationally) for establishing metric standards. These few exceptions, still to be decided, are summarized in the introduction to Part 2 of this report.

These standards include most of the units used commonly by SPE members. The subcommittee is aware that some will find the list incomplete for their area of specialty. Additions will continue to be made but too long a list can become cumbersome. The subcommittee believes that these standards provide a basis for metric practice beyond the units listed. So long as one maintains these standards a new unit can be "coined" that should prove acceptable.

Part 1: SI-The International System of Units

Introduction

Worldwide scientific, engineering, industrial, and commercial groups are converting to SI metric units. Many in the U.S. are now active in such conversion, based on work accomplished by national ${ }^{1}$ and international ${ }^{2}$ authorities. Various U.S. associations, professional societies, and agencies are involved in this process, including, but not limited to, American Society for Testing and Materials (ASTM), ${ }^{3}$ American Petroleum Inst. (API), ${ }^{4,5}$ American Natl. Standards Inst. (ANSI), ${ }^{3,6}$ American Society of Mechanical Engineers (ASME), ${ }^{7}$ and American Natl. Metric Council (ANMC). ${ }^{8}$ The Canadian Petroleum Assn. (CPA) and other Canadian groups have been especially active in conversion work. ${ }^{13}$ The Society of Petroleum Engineers of AIME intends to keep its worldwide membership informed on the conversion to and use of SI metric units.

The term ' SI'" is an abbreviation for Le Système International d'Unités or The International System of Units.

SI is not identical with any of the former cgs, mks, or mksA systems of metric units but is closely related to them and is an extension of and improvement over them. SI measurement symbols are identical in all languages. As in any other language, rules of spelling, punctuation, and pronunciation are essential to avoid errors in numerical work and to make the system easier to use and understand on a worldwide basis. These rules, together with decimal usage, units coherence, and a series of standard prefixes for multiples and submultiples of most SI units, provide a rational system with minimum difficulty of transition from English units or older systems of metric units. Refs. 1 through 4 of this paper are recommended to the reader wishing official information, development history, or more detail on SI; material from these and other references cited has been used freely in this report.

Appendix A provides definitions for some of the terms used.

SI Units and Unit Symbols ${ }^{3}$

The short-form designations of units (such as ft for feet, kg for kilograms, m for meters, mol for moles, etc.) have heretofore been called unit 'abbreviations'" in SPE terminology to avoid confusion with the term 'symbols'' applied to letter symbols used in mathematical equations. However, international and national standard practice is to call these unit designations "unit symbols', the latter usage will be followed in this report.

SI Units

SI is based on seven well defined "base units" that quantify seven base quantities that by convention are regarded as dimensionally independent. It is a matter of choice how many and which quantities are considered base quantities. ${ }^{9}$ SI has chosen the seven base quantities and base units listed in Table 1.1 as the basis of the International System. In addition, there are two "supplementary quantities', (Table 1.2).

Tables 1.1 and 1.2 show current practices for designating the dimensions of base and supplementary physical quantities, plus letter symbols for use in mathematical equations.

SI 'derived units'" are a third class, formed by combining, as needed, base units, supplementary units, and other derived units according to the algebraic relations linking the corresponding quantities. The symbols for derived units that do not have their own individual symbols are obtained by using the mathematical signs for multiplication and division, together with appropriate exponents (e.g., SI velocity, meter per second, m / s or $\mathrm{m} \cdot \mathrm{s}^{-1}$; SI angular velocity, radian per second, rad/s or $\left.\mathrm{rad} \cdot \mathrm{s}^{-1}\right)$.

Table 1.3 contains a number of SI derived units, including all the 19 approved units assigned special names and individual unit symbols.

Appendix B provides a more detailed explanation of the SI systems of units, their definitions, and abbreviations.

SI Unit Prefixes ${ }^{8}$

The SI unit prefixes, multiplication factors, and SI prefix symbols are shown in Table 1.4. Some of the prefixes may seem strange at first, but there are enough familiar ones in the list to make it relatively easy for technical personnel to adjust to their use; kilo, mega, deci, centi, milli, and micro are known to most engineers and scientists.

One particular warning is required about the prefixes: in the SI system, k and M (kilo and mega) stand for 1000 and 1000000 , respectively, whereas M and $M M$ or m and mm have been used previously in the oil industry for designating thousands and millions of gas volumes. Note carefully, however, that there is no parallelism because SI prefixes are raised to the power of the unit employed, while the customary M and MM prefixes were not. Examples: km^{3} means cubic kilometers, not thousands of cubic meters; cm^{2} means square centimeters, not onehundredth of a square meter. The designation for 1000 cubic meters is $10^{3} \mathrm{~m}^{3}$ and for 1 million cubic meters is $10^{6} \mathrm{~m}^{3}$-not km^{3} and Mm^{3}, respectively.
Appendix C gives examples of the vital importance of following the precise use of upper-case and lower-case letters for prefixes and for unit symbols.

Application of the Metric System

General

SI is the form of the metric system preferred for all applications. It is important that this modernized version be thoroughly understood and properly applied. This section, together with Appendix material, provides guidance and recommendations concerning style and usage of the SI form of the metric system.

Style and Usage

Take care to use unit symbols properly; the agreements in international and national standards provide uniform rules (summarized in Appendix C). It is essential that these rules be followed closely to provide maximum ease of communication and to avoid costly errors. Handling of unit names varies somewhat among different countries because of language differences, but using the rules in Appendix C should minimize most difficulties of communication.

Usage for Selected Quantities

Mass, Force, and Weight. The principal departure of SI from the gravimetric system of metric engineering units is the use of explicitly distinct units for mass and force. In SI, kilogram is restricted to the unit of mass. The newton is the only SI unit of force, defined as 1 $(\mathrm{kg} \cdot \mathrm{m}) / \mathrm{s}^{2}$, to be used wherever force is designated, including derived units that contain force-e.g., pressure or stress $\left(\mathrm{N} / \mathrm{m}^{2}=\mathrm{Pa}\right)$, energy $(\mathrm{N} \cdot \mathrm{m}=\mathrm{J})$, and power $[(\mathrm{N} \cdot \mathrm{m}) / \mathrm{s}=\mathrm{W}]$.
There is confusion over the use of the term weight as a quantity to mean either force or mass. In science and technology, the term weight of a body usually means the force that, if applied to the body, would give it an acceleration equal to the local acceleration of free fall (g, when referring to the earth's surface). This acceleration varies in time and space; weight, if used to mean force, varies also. The term force of gravity (mass times acceleration of gravity) is more accurate than weight for this meaning.

In commercial and everyday use, on the other hand, the term weight nearly always means mass. Thus, when

TABLE 1.1 - SI BASE QUANTITIES AND UNITS*

Base Quantity or "Dimension"	SI Unit	SI Unit Symbol ("Abbreviation"), Use Roman (Upright) Type	SPE Letter Symbol for Mathematica Equations, Use Italic (Sloping) Type
length	meter	m	L
mass	kilogram	kg	m
time	second	s	t
electric current	ampere	A	I
thermodynamic temperature	kelvin	K	T
amount of substance luminous intensity	mole \dagger candela	cd	n

*The seven base units, two supplementary units and other terms are defined in Appendixes A and B, Part 1.
"-SPE heretofore has arbitrarily used charge q, the product of electric current and time, as a basic dimension. In unit symbols this would be A-s; in SPE mathematical symbols, $I \cdot t$. \dagger When the mole is used, the elementary entities must be specified; they may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles. In petroleum work, the terms "kilogram mole," "pound mole," etc., often are shortened erroneously to "mole."

TABLE 1.2 - SI SUPPLEMENTARY UNITS*

Supplementary Quantity or "Dimension"	SI Unit	SI Unit Symbol ("Abbreviation"), Use Roman (Upright) Type	SPE Letter Symbol for Mathematical Equations, Use Italic (Sloping) Type
plane angle solid angle	radian steradian	rad sr	$\stackrel{0}{\Omega}$

*The seven base units, two supplementary units, and other terms are defined in Appendixes A and B, Part 1.
""ISO specifies these two angles as dimensionless with respect to the seven base quantities.

TABLE 1.3 - SOME COMMON SI DERIVED UNITS

Quantity	Unit	SI Unit Symbol ("Abbreviation"), Use Roman Type	Formula, Use Roman Type
absorbed dose	gray	Gy	J / kg
acceleration	meter per second squared		$\mathrm{m} / \mathrm{s}^{2}$
activity (of radionuclides)	becquerel	Bq	1/s
angular acceleration	radian per second squared	. \cdot	$\mathrm{rad} / \mathrm{s}^{2}$
angular velocity	radian per second	\ldots	rad/s
area	square meter	\ldots	m^{2}
Celsius temperature	degree Celsius	${ }^{\circ} \mathrm{C}$	K
density	kilogram per cubic meter	...	$\mathrm{kg} / \mathrm{m}^{3}$
dose equivalent	sievert	Sv	J / kg
electric capacitance	farad	F	A $\cdot \mathrm{S}$ N ($=\mathrm{C} / \mathrm{N}$)
electric charge	coulomb	C	A-s
electrical conductance	siemens	S	AV
electric field strength	volt per meter	...	V / m
electric inductance	henry	H	$\mathrm{V} \cdot \mathrm{s} / \mathrm{A}(=\mathrm{Wb} / \mathrm{A})$
electric potential	volt	V	W/A
electric resistance	ohm	Ω	V/A
electromotive force	volt	V	W/A
energy	joule.	J	$N \cdot m$
entropy	joule per kelvin	\ldots	J/K
force	newton	N	$\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
frequency	hertz	Hz	1/s
illuminance	lux	Ix	$1 \mathrm{~m} / \mathrm{m}^{2}$
luminance	candela per square meter		$\mathrm{cd} / \mathrm{m}^{2}$
luminous flux	lumen	Im	cd/sr
magnetic field strength	ampere per meter	wi	A/m
magnetic flux	weber	Wb	$\mathrm{V} \cdot \mathrm{s}$
magnetic flux density	tesla	T	$\mathrm{Wb} / \mathrm{m}^{2}$
potential difference	volt	V	W/A
power	watt	W	J/s
pressure	pascal	Pa	$\mathrm{N} / \mathrm{m}^{2}$
quantity of electricity	coulomb	C	A.s
quantity of heat	joule	J	$\mathrm{N} \cdot \mathrm{m}$
radiant flux	watt	W	J/s
radiant intensity	watt per steradian	\ldots	W/sr
specific heat	joule per kilogram kelvin	\cdots	$\mathrm{J}(\mathrm{kg} \cdot \mathrm{K})$
stress	pascal	Pa	N/m ${ }^{2}$
thermal conductivity	watt per meter kelvin	...	$\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$
velocity	meter per second	\cdots	m / s
viscosity, dynamic	pascal second	\ldots	$\mathrm{Pa} \cdot \mathrm{s}$
viscosity, kinematic	square meter per second		$\mathrm{m}^{2} / \mathrm{s}$
voltage	volt	V	W/A
volume*	cubic meter		m^{3}
wavenumber	1 per meter		1/m
work	joule	J	$\mathrm{N} \cdot \mathrm{m}$

*In 1964, the General Conference on Weights and Measures adopted liter as a special name for the cubic decimeter but discouraged the use of liter for volume measurement of extreme precision (see Appendix B).

TABLE 1.4 - SI UNIT PREFIXES

Multiplication Factor	$\underset{\text { Prefix }}{\mathrm{SI}}$	SI Prefix Symbol, Use Roman Type	Pronunciation (U.S.)*	Meaning (U.S.)	Meaning In Other Countries
$1000000000000000000=10^{18}$	exa**	E	ex' a (a as in a bout)	one quintillion timest \dagger	trillion
$1000000000000000=10^{15}$	peta**	P	as in p etal	one quadrillion times \dagger	thousand billion
$1000000000000=10^{12}$	tera	T	as in terra ce	one trillion times \dagger	billion
$1000000000=10^{9}$	giga	G	jig' a (a as in a bout)	one billion times \dagger	milliard
$1000000=10^{6}$	mega	M	as in mega phone	one million times	
$1000=10^{3}$	kilo	k	as in kilo watt	one thousand times	
$100=10^{2}$	hecto \ddagger	h	heck' toe	one hundred times	
$10=10$	dekał	da	deck' a (a as in a bout)	ten times	
$0.1=10^{-1}$	deci \ddagger	d	as in deci mal	one tenth of	
$0.01=10^{-2}$	centif	c	as in senti ment	one hundredth of	
$0.001=10^{-3}$	milli	m	as in mili tary	one thousandth of	
$0.000001=10^{-6}$	micro	μ	as in micro phone	one millionth of	
$0.000000001=10^{-9}$	nano	n	nan' oh (an as in an t)	one billionth of \dagger	milliardth
$0.000000000001=10^{-12}$	pico	p	peek' oh	one trillionth of \dagger	billionth
$0.000000000000001=10^{-15}$	femto	f	fem' toe (fem as in fem inine)	one quadrillionth of \dagger	thousand billionth
$0.000000000000000001=10^{-18}$	atto	a	as in anato my	one quintilionth of \dagger	trillionth

[^0]one speaks of a person's weight, the quantity referred to is mass. Because of the dual use, the term weight should be avoided in technical practice except under circumstances in which its meaning is completely clear. When the term is used, it is important to know whether mass or force is intended and to use SI units properly as described above by using kilograms for mass and newtons for force.

Gravity is involved in determining mass with a balance or scale. When a standard mass is used to balance the measured mass, the effect of gravity on the two masses is canceled except for the indirect effect of air or fluid buoyancy. In using a spring scale, mass is measured indirectly since the instrument responds to the force of gravity. Such scales may be calibrated in mass units if the variation in acceleration of gravity and buoyancy corrections are not significant in their use.

The use of the same name for units of force and mass causes confusion. When non-Si units are being converted to SI units, distinction should be made between force and mass-e.g., use lbf to denote force in gravimetric engineering units, and use lbm for mass.

Use of the metric ton, also called tonne $(1.0 \mathrm{Mg})$, is common.

Linear Dimensions. Ref. 3 provides discussions of length units applied to linear dimensions and tolerances of materials and equipment, primarily of interest to engineers in that field.

Temperature. The SI temperature unit is the kelvin (not 'degree Kelvin''); it is the preferred unit to express thermodynamic temperature. Degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$ is an SI derived unit used to express temperature and temperature intervals. The Celsius scale (formerly called centigrade) is related directly to the kelvin scale as follows: the temperature interval $1^{\circ} \mathrm{C}=1 \mathrm{~K}$, exactly. Celsius temperature $\left(T^{\circ} \mathrm{C}\right)$ is related to thermodynamic temperature (T_{K}) as follows: $T^{\circ} \mathrm{C}=T_{\mathrm{K}}-T_{0}$ exactly, where $T_{0}=273.15 \mathrm{~K}$ by definition. Note that the SI unit symbol for the kelvin is K without the degree mark, whereas the older temperature units are known as degrees Fahrenheit, degrees Rankine, and degrees Celsius, with degree marks shown on the unit symbol (${ }^{\circ} \mathrm{F},{ }^{\circ} \mathrm{R},{ }^{\circ} \mathrm{C}$).

Time. The SI unit for time is the second, and this is preferred, but use of the minute, hour, day, and year is permissible.

Angles. The SI unit for plane angle is the radian. The use of the arc degree and its decimal submultiples is permissible when the radian is not a convenient unit. Use of the minute and second is discouraged except possibly for cartography. Solid angles should be expressed in steradians.

Volume. The SI unit of volume is the cubic meter. This unit, or one of its regularly formed multiples, is preferred for all applications. The special name liter has been approved for the cubic decimeter (see Appendix B), but use of the liter is restricted to the measurement of liquids and gases.

Energy. The SI unit of energy, the joule, together with its multiples, is preferred for all applications. The kilowatt-hour is used widely as a measure of electric energy, but this unit should not be introduced into any new areas; eventually it should be replaced by the megajoule.

Torque and Bending Moment. The vector product of force and moment arm is expressed in newton meters $(\mathrm{N} \cdot \mathrm{m})$ by SPE as a convention when expressing torque energies.

Pressure and Stress. The SI unit for pressure and stress is the pascal (newton per square meter); with proper SI prefixes it is applicable to all such measurements. Use of the old metric gravitational units-kilogram-force per square centimeter, kilogram-force per square millimeter, torr, etc.-is to be discontinued. Use of the bar is discouraged by the standards organizations.
It has been recommended internationally that pressure units themselves should not be modified to indicate whether the pressure is "absolute" (above zero) or "gauge" (above atmospheric pressure). If the context leaves any doubt as to which is meant, the word "pressure" must be qualified appropriately: "...at a gauge pressure of 13 kPa ," or "...at an absolute pressure of 13 kPa, , etc.

Units and Names To Be Avoided or Abandoned

Tables 1.1 through 1.3 include all SI units identified by formal names, with their individual unit symbols. Virtually all other named metric units formerly in use (as well as nonmetric units) are to be avoided or abandoned. There is a long list of such units (e.g., dyne, stokes, 'esu," gauss, gilbert, abampere, statvolt, angstrom, fermi, micron, mho, candle, calorie, atmosphere, mm Hg , and metric horsepower). The reasons for abandoning the non-Si units are discussed in Appendix B. Two of the principal reasons are the relative simplicity and coherence of the SI units.

Rules for Conversion and Rounding ${ }^{3}$

Conversion

Table 1.7, Appendix D, contains general conversion factors that give exact values or seven-digit accuracy for implementing these rules except where the nature of the dimension makes this impractical.

The conversion of quantities should be handled with careful regard to the implied correspondence between the accuracy of the data and the given number of digits. In all conversions, the number of significant digits retained should be such that accuracy is neither sacrificed nor exaggerated.

Proper conversion procedure is to multiply the specified quantity by the conversion factor exactly as given in Table 1.7 and then round to the appropriate number of significant digits. For example, to convert 11.4 ft to meters: $11.4 \times 0.3048=3.47472$, which rounds to 3.47 m .

Accuracy and Rounding

Do not round either the conversion factor or the quantity before performing the multiplication; this reduces ac-
curacy. Proper conversion procedure includes rounding the converted quantity to the proper number of significant digits commensurate with its intended precision. The practical aspects of measuring must be considered when using SI equivalents. If a scale divided into sixteenths of an inch was suitable for making the original measurements, a metric scale having divisions of 1 mm is obviously suitable for measuring in SI units, and the equivalents should not be reported closer than the nearest 1 mm . Similarly, a gauge or caliper graduated in divisions of 0.02 mm is comparable to one graduated in divisions of 0.001 in. Analogous situations exist for mass, force, and other measurements. A technique to determine the proper number of significant digits in rounding converted values is described here for general use.

General Conversion. This approach depends on first establishing the intended precision or accuracy of the quantity as a necessary guide to the number of digits to retain. The precision should relate to the number of digits in the original, but in many cases that is not a reliable indicator. A figure of 1.1875 may be a very accurate decimalization of a noncritical $13 / 16$ that should have been expressed as 1.19 . On the other hand, the value 2 may mean 'about 2 '' or it may mean a very accurate value of 2 , which should then have been written as 2.0000. It is therefore necessary to determine the intended precision of a quantity before converting. This estimate of intended precision should never be smaller than the accuracy of measurement but usually should be smaller than one tenth the tolerance if one exists. After estimating the precision of the dimension, the converted dimension should be rounded to a minimum number of significant digits (see section on 'Significant Digits'') such that a unit of the last place is equal to or smaller than the converted precision.

Examples

1. A stirring rod 6 in . long: In this case, precision is estimated to be about $1 / 2 \mathrm{in}$. ($\pm 1 / 4 \mathrm{in}$.). Converted, $1 / 2 \mathrm{in}$. is 12.7 mm . The converted $6-\mathrm{in}$. dimension of 152.4 mm should be rounded to the nearest 10 mm , or 150 mm .
2. 50000 -psi tensile strength: In this case, precision is estimated to be about $\pm 200 \mathrm{psi}(\pm 1.4 \mathrm{MPa})$ based on an accuracy of $\pm 0.25 \%$ for the tension tester and other factors. Therefore, the converted dimension, 344.7379 MPa , should be rounded to the nearest whole unit, 345 MPa .
3. Test pressure $200 \pm 15 \mathrm{psi}$: Since one tenth of the tolerance is $\pm 1.5 \mathrm{psi}(10.34 \mathrm{kPa})$, the converted dimension should be rounded to the nearest 10 kPa . Thus, $1378.9514 \pm 103.42135 \mathrm{kPa}$ becomes $1380 \pm 100 \mathrm{kPa}$.

Special Cases. Converted values should be rounded to the minimum number of significant digits that will maintain the required accuracy. In certain cases, deviation from this practice to use convenient or whole numbers may be feasible. In that case, the word "approximate" must be used following the conversion-e.g., $17 / 8$ in. $=47.625 \mathrm{~mm}$ exact, 47.6 mm normal rounding, 47.5 mm (approximate) rounded to preferred or convenient half-millimeter, 48 mm (approximate) rounded to whole number.

A quantity stated as a limit, such as "not more than'"
or "maximum," must be handled so that the stated limit is not violated. For example, a specimen 'at least 4 in . wide" requires a width of at least 101.6 mm , or (rounded) at least 102 mm .

Significant Digit. Any digit that is necessary to define the specific value or quantity is said to be significant. For example, a distance measured to the nearest 1 m may have been recorded as 157 m ; this number has three significant digits. If the measurement had been made to the nearest 0.1 m , the distance may have been 157.4 m-four significant digits. In each case, the value of the right-hand digit was determined by measuring the value of an additional digit and then rounding to the desired degree of accuracy. In other words, 157.4 was rounded to 157 ; in the second case, the measurement may have been 157.36, rounded to 157.4 .

Importance of Zeros. Zeros may be used either to indicate a specific value, as does any other digit, or to indicate the magnitude of a number. The 1970 U.S. population figure rounded to thousands was 203185 000. The six left-hand digits of this number are significant; each measures a value. The three right-hand digits are zeros that merely indicate the magnitude of the number rounded to the nearest thousand. To illustrate further, each of the following estimates and measurements is of different magnitude, but each is specified to have only one significant digit:

```
1000
    100
        10
        0 . 0 1
        0.001
        0.000 1.
```

It is also important to note that, for the first three numbers, the identification of significant digits is possible only through knowledge of the circumstances. For example, the number 1000 may have been rounded from about 965 , or it may have been rounded from 999.7 , in which case all three zeros are significant.

Data of Varying Precision. Occasionally, data required for an investigation must be drawn from a variety of sources where they have been recorded with varying degrees of refinement. Specific rules must be observed when such data are to be added, subtracted, multiplied, or divided.

The rule for addition and subtraction is that the answer shall contain no significant digits farther to the right than occurs in the least precise number. Consider the addition of three numbers drawn from three sources, the first of which reported data in millions, the second in thousands, and the third in units:

163000000
217885000
96432768
477317768
This total indicates a precision that is not valid. The numbers should first be rounded to one significant digit
farther to the right than that of the least precise number, and the sum taken as follows.

$$
\begin{array}{r}
163000000 \\
217900000 \\
96400000 \\
\hline 477300000
\end{array}
$$

Then, the total is rounded to 477000000 as called for by the rule. Note that if the second of the figures to be added had been 217985000 , the rounding before addition would have produced 218000000 , in which case the zero following 218 would have been a significant digit.

The rule for multiplication and division is that the product or quotient shall contain no more significant digits than are contained in the number with the fewest significant digits used in the multiplication or division. The difference between this rule and the rule for addition and subtraction should be noted; for addition and subtraction, the rule merely requires rounding digits to the right of the last significant digit in the least precise number. The following illustration highlights this difference.

Multiplication: $\quad 113.2 \times 1.43=161.876$ rounded to 162 .
Division: $\quad 113.2 \div 1.43=79.16$ rounded to 79.2
Addition: $\quad 113.2+1.43=114.63$ rounded to 114.6
Subtraction: $\quad 113.2-1.43=111.77$ rounded to 111.8 .

The above product and quotient are limited to three significant digits since 1.43 contains only three significant digits. In contrast, the rounded answers in the addition and subtraction examples contain four significant digits.

Numbers used in the illustration are all estimates or measurements. Numbers that are exact counts (and conversion factors that are exact) are treated as though they consist of an infinite number of significant digits. Stated more simply, when a count is used in computation with a measurement, the number of significant digits in the answer is the same as the number of significant digits in the measurement. If a count of 40 is multiplied by a measurement of 10.2 , the product is 408 . However, if 40 were an estimate accurate only to the nearest 10 and, hence, contained one significant digit, the product would be 400 .

Rounding Values ${ }^{10}$

When a figure is to be rounded to fewer digits than the total number available, the procedure should be as follows.

When the First Digit
Discarded is
less than 5
more than 5
5 followed only
by zeros*

The Last Digit Retained is
unchanged increased by 1
unchanged if even, increased by 1 if odd

Examples:
4.46325 if rounded to three places would be 4.463.
8.37652 if rounded to three places would be 8.377 .
4.36500 if rounded to two places would be 4.36 .
4.35500 if rounded to two places would be 4.36 .

Conversion of Linear Dimensions of Interchangeable Parts

Detailed discussions of this subject are provided by ASTM, ${ }^{3}$ API, ${ }^{4}$ and ASME ${ }^{7}$ publications, and are recommended to the interested reader.

Other Units

Temperature. General guidance for converting tolerances from degrees Fahrenheit to kelvins or degrees Celsius is given in Table 1.5. Normally, temperatures expressed in a whole number of degrees Fahrenheit should be converted to the nearest 0.5 K (or $0.5^{\circ} \mathrm{C}$). As with other quantities, the number of significant digits to retain will depend on implied accuracy of the original dimension e.g.,*
$100 \pm 5^{\circ} \mathrm{F}$ (tolerance); implied accuracy, estimated
total $2^{\circ} \mathrm{F}$ (nearest $1^{\circ} \mathrm{C}$) $37.7778 \pm 2.7778^{\circ} \mathrm{C}$
rounds to $38 \pm 3^{\circ} \mathrm{C}$.
$1000 \pm 50^{\circ} \mathrm{F}$ (tolerance); implied accuracy, estimated
total $20^{\circ} \mathrm{F}$ (nearest $10^{\circ} \mathrm{C}$) $537.7778 \pm 27.7778^{\circ} \mathrm{C}$
rounds to $540 \pm 30^{\circ} \mathrm{C}$.

Pressure or Stress. Pressure or stress values may be converted by the same principle used for other quantities. Values with an uncertainty of more than 2% may be converted without rounding by the approximate factor:

$$
1 \mathrm{psi}=7 \mathrm{kPa} .
$$

For conversion factors see Table 1.7.
Special Length Unit-the Vara. Table 1.8, Appendix E , provides conversion factors and explanatory notes on the problems of converting the several kinds of vara units to meters.

Special Terms and Quantities Involving Mass and Amount of Substance

The International Union of Pure and Applied Chemistry, the International Union of Pure and Applied Physics,

TABLE 1.5 - CONVERSION OF TEMPERATURE TOLERANCE REQUIREMENTS

Tolerance $\left({ }^{\circ} \mathrm{F}\right)$	Tolerance $\left(\mathrm{K}\right.$ or $\left.{ }^{\circ} \mathrm{C}\right)$
± 1	± 0.5
± 2	± 1
± 5	± 3
± 10	± 5.5
± 15	± 8.5
± 20	± 11
± 25	± 14

[^1]and the International Organization for Standardization provide clarifying usages for some of the terms involving the base quantities 'mass'' and 'amount of substance." Two of these require modifying the terminology appearing previously in SPE's Symbols Standards.
Table 1.6 shows the old and the revised usages.

Mental Guides for Using Metric Units

Table 1.9, Appendix F, is offered as a "memory jogger'" or guide to help locate the "metric ballpark" relative to customary units. Table 1.9 is not a conversion table. For accurate conversions, refer to Table 1.7 or to Tables 2.2 and 2.3 for petroleum-industry units, and round off the converted values to practical precision as described earlier.

References**

1. "The Intemational System of Units (SI)," NBS Special Publication 330, U.S. Dept. of Commerce, Natl. Bureau of Standards, Superintendent of Documents, U.S. Govemment Printing Office, Washington, D.C. (1981). (Order by SD Catalog No. C13.10:330/3.)
2. "SI Units and Recommendations for the Use of Their Multiples and of Certain Other Units," second edition, 1981-02-15, Intl. Standard ISO 1000, Intl. Organization for Standardization, American Natl. Standards Inst. (ANSI), New York (1981).
3. "Standard for Metric Practice," E 380-82, American Soc. for Testing and Materials, Philadelphia. (Similar material published in IEEE Std. 268-1982.)
4. Metric Practice Guide-A Guide to the Use of SI-The International System of Units, second edition. API Pub. 2563 (now being revised), American Petroleum Institute, Washington, D.C. (Jan. 1973). (This material is derived from ASTM E 380-72.)
5. Conversion of Operational and Process Measurement Units to the Metric (SI) System, first edition. API Pub. 2564, Washington, D.C. (March 1974).
6. "A Bibliography of Metric Standards," ANSI, New York (June 1975). (Also see ANSI's annual catalog of national and international standards.)
7. ASME Orientation and Guide for Use of SI (Metric) Units, sixth edition. Guide SI-1, American Soc. of Mechanical Engineers (ASME), New York (May 1, 1975). (ASME also has published Guides SI-2, Strength of Materials; SI-3, Dynamics; SI-5, Fluid Mechanics; SI-6, Kinematics; SI-8, Vibration; and SI-10, Steam Charts.)
8. Metric Editorial Guide, third edition, American Natl. Metric Council (ANMC), Washington, D.C. (July 1981).
9. "General Principles Conceming Quantities, Units and Symbols," General Introduction to ISO 31, second edition, Intl. Standard ISO 31/0, Intl. Organization for Standardization, ANSI, New York City (1981).
10. "American National Standard Practice for Inch-Millimeter Conversion for Industrial Use," ANSI B48.1-1933 (R1947), ISO R370-1964, Intl. Organization for Standardization, ANSI, New York. (A later edition has been issued: "Toleranced Dimen-sions-Conversion From Inches to Millimeters and Vice Versa,' ISO 370-1975.)
11. "Factors for High-Precision Conversion," NBS LC1071 (July 1976).
12. "Information Processing-Representations of SI and Other Units for Use in Systems With Limited Character Sets,'’ Intl. Standard ISO 2955-1974, Intl. Organization for Standardization, ANSI, New York City. (Ref. 5 reproduces the 1973 edition of this standard in its entirety.)
13. 'Supplementary Metric Practice Guide for the Canadian Petroleum Industry," fourth edition, P.F. Moore (ed.), Canadian Petroleum Assn. (Oct. 1979).
14. "Letter Symbols for Units of Measurement," ANSI/IEEE Std. 260-1978. Available from American Natl. Standards Inst., New York City.
15. Mechtly, E.A.: "The Intemational System of Units—Physical Constants and Conversion Factors," NASA SP-7012, Scientific and Technical Information Office, NASA, Washington, D.C. 1973 edition available from U.S. Govemment Printing Office, Washington, D.C.
16. McElwee, P.G.: The Texas Vara. Available from Commissioner, General Land Office, State of Texas, Austin (April 30, 1940).
"See Appendix A and prior paragraph on "General Conversion."
"For cost and address information on ordering, see paper SPE 6212, or contact SPE Headquarters.

APPENDIX A ${ }^{3}$

Terminology

To ensure consistently reliable conversion and rounding practices, a clear understanding of the related nontechnical terms is prerequisite. Accordingly, certain terms used in this standard are defined as follows.

Accuracy (as distinguished from Precision). The degree of conformity of a measured or calculated value to some recognized standard or specified value. This concept involves the systematic error of an operation, which is seldom negligible.

Approximate. A value that is nearly but not exactly correct or accurate.

Coherence. A characteristic of a coherent system of units, as described in Appendix B, such that the product or quotient of any two unit quantities is the unit of the

TABLE 1.6-SPECIAL TERMS AND QUANTITIES INVOLVING MASS AND AMOUNT OF SUBSTANCE

Old Usage		Standardized Usage	
Term	Dimensions (ISO Symbols, See Table 1.1)	Term	SI Unit Symbol
atomic weight (SPE Symbols Standard)	M	mass of atom	kg
atomic weight (elsewhere)	*	relative atomic mass	*
equivalent	-	mole	mol
mass of molecule	M	molecular mass	kg
molar	-	molar (means, "divided by amount of substance")	1/mol
molarity	-	concentration	$\mathrm{mol} / \mathrm{m}^{3}$
molecular weight (SPE Symbols Standard)	M	molar mass	$\mathrm{kg} / \mathrm{mol}$
molecular weight (elsewhere)	*	relative molecular mass	*
normal - obsolete -Dimensionless			

resulting quantity. The SI base units, supplementary units, and derived units form a coherent set.

Deviation. Variation from a specified dimension or design requirement, usually defining upper and lower limits (see also Tolerance).

Digit. One of the 10 Arabic numerals (0 to 9).
Dimension(s). Two meanings: (1) A group of fundamental (physical) quantities, arbitrarily selected, in terms of which all other quantities can be measured or identified. ${ }^{9}$ Dimensions identify the physical nature of, or the basic components making up, a physical quantity. They are the bases for the formation of useful dimensionless groups and dimensionless numbers and tor the powerful tool of dimensional analysis. The dimensions for the arbitrarily selected base units of the SI are length, mass, time, electric current, thermodynamic temperature, amount of substance, and luminous intensity. SI has two supplementary quantities considered dimension-less-plane angle and solid angle. (2) A geometric element in a design, such as length and angle, or the magnitude of such a quantity.

Figure (numerical). An arithmetic value expressed by one or more digits or a fraction.

Nominal Value. A value assigned for the purpose of convenient designation; a value existing in name only.

Precision (as distinguished from Accuracy). The degree of mutual agreement between individual measurements (repeatability and reproducibility).

Quantity. A concept used for qualitative and quantitative descriptions of a physical phenomenon. ${ }^{9}$

Significant Digit. Any digit that is necessary to define a value or quantity (see text discussion).

Tolerance. The total range of variation (usually bilateral) permitted for a size, position, or other required quantity; the upper and lower limits between which a dimension must be held.
U.S. Customary Units. Units based on the foot and the pound, commonly used in the U.S. and defined by the Natl. Bureau of Standards. ${ }^{11}$ Some of these units have the same name as similar units in the U.K. (British, English, or U.K. units) but are not necessarily equal to them.

APPENDIX B ${ }^{3}$
 SI Units

Advantages of SI Units

SI is a rationalized selection of units from the metric system that individually are not new. They include a unit of force (the newton), which was introduced in place of the kilogram-force to indicate by its name that it is a unit of force and not of mass. SI is a coherent system with seven base units for which names, symbols, and precise definitions have been established. Many derived units are defined in terms of the base units, with symbols
assigned to each; in some cases, special names and unit symbols are given-e.g., the newton (N).

One Unit Per Quantity. The great advantage of SI is that there is one, and only one, unit for each physical quantity-the meter for length (L), kilogram (instead of gram) for mass (m), second for time (t), etc. From these elemental units, units for all other mechanical quantities are derived. These derived units are defined by simple equations among the quantities, such as $v=d L / d t$ (velocity), $a=d v / d t$ (acceleration), $F=m a$ (force), $W=F L$ (work or energy), and $P=W / t$ (power). Some of these units have only generic names, such as meter per second for velocity; others have special names and symbols, such as newton (N) for force, joule (J) for work or energy, and watt (W) for power. The SI units for force, energy, and power are the same regardless of whether the process is mechanical, electrical, chemical, or nuclear. A force of 1 N applied for a distance of 1 m can produce 1 J of heat, which is identical with what 1 W of electric power can produce in 1 second.

Unique Unit Symbols. Corresponding to the SI advantages of a unique unit for each physical quantity are the advantages resulting from the use of a unique and well defined set of symbols. Such symbols eliminate the confusion that can arise from current practices in different disciplines such as the use of ' b '' for both the bar (a unit of pressure) and barn (a unit of area).

Decimal Relation. Another advantage of SI is its retention of the decimal relation between multiples and submultiples of the base units for each physical quantity. Prefixes are established for designating multiple and sub-
 $\left(10^{-18}\right)$ for convenience in writing and speaking.

Coherence. Another major advantage of SI is its coherence. This system of units has been chosen in such a way that the equations between numerical values, including the numerical factors, have the same form as the corresponding equations between the quantities: this constitutes a "coherent'" system. Equations between units of a coherent unit system contain as numerical factors only the number 1 . In a coherent system, the product or quotient of any two unit quantities is the unit of the resulting quantity. For example, in any coherent system, unit area results when unit length is multiplied by unit length ($1 \mathrm{~m} \times 1 \mathrm{~m}=1 \mathrm{~m}^{2}$), unit force when unit mass* is multiplied by unit acceleration ($1 \mathrm{~kg} \times 1 \mathrm{~m} / \mathrm{s}^{2}=1 \mathrm{~N}$), unit work when unit force is multiplied by unit length (1 $\mathrm{N} \times 1 \mathrm{~m}=1 \mathrm{~J}$), and unit power when unit work is divided by unit time ($1 \mathrm{~J} \div 1$ second $=1 \mathrm{~W}$). Thus, in a coherent system in which the meter is the unit of length, the square meter is the unit of area, but the are** and hectare are not coherent. Much worse disparities occur in systems of 'customary units'' (both nonmetric and older metric) that require many numerical adjustment factors in equations.

Base Units. Whatever the system of units, whether it be coherent or noncoherent, particular samples of some

[^2]physical quantities must be selected arbitrarily as units of those quantities. The remaining units are defined by appropriate experiments related to the theoretical interrelations of all the quantities. For convenience of analysis, units pertaining to certain base quantities are by convention regarded as dimensionally independent; these units are called base units (Table 1.1), all all others (derived units) can be expressed algebraically in terms of the base units. In SI, the unit of mass, the kilogram, is defined as the mass of a prototype kilogram preserved by the International Bureau of Weights and Measures (BIPM) in Paris. All other base units are defined in terms of reproducible phenomena-e.g., the wave lengths and frequencies of specified atomic transitions.

Non-SI Metric Units

Various other units are associated with SI but are not a part thereof. They are related to units of the system by powers of 10 and are employed in specialized branches of physics. An example is the bar, a unit of pressure, approximately equivalent to 1 atm and exactly equal to 100 kPa . The bar is employed extensively by meteorologists. Another such unit is the gal, equal exactly to an acceleration of $0.01 \mathrm{~m} / \mathrm{s}^{2}$. It is used in geodetic work. These, however, are not coherent units-i.e., equations involving both these units and SI units cannot be written without a factor of proportionality even though that factor may be a simple power of 10 .

Originally (1795), the liter was intended to be identical to the cubic decimeter. The Third General Conference on Weights and Measures (CGPM) in 1901 defined the liter as the volume occupied by the mass of 1 kilogram of pure water at its maximum density under normal atmospheric pressure. Careful determinations subsequently established the liter so defined as equivalent to $1.000028 \mathrm{dm}^{3}$. In 1964, the CGPM withdrew this definition of the liter and declared that "liter" was a special name for the cubic decimeter. Thus, its use is permitted in SI but is discouraged because it creates two units for the same quantity and its use in precision measurements might conflict with measurements recorded under the old definition.

SI Base Unit Definitions

Authorized translations of the original French definitions of the seven base and two supplementary units of SI follow ${ }^{3}$ (parenthetical items added).
"Meter (m)-The meter is the length equal to 1650 763.73 wavelengths in vacuum of the radiation corresponding to the transition between the levels $2 \mathrm{p}_{10}$ and $5 \mathrm{~d}_{5}$ of the krypton-86 atom.' (Adopted by 11 th CGPM 1960.)
''Kilogram (kg)-The kilogram is the unit of mass (and is the coherent SI unit); it is equal to the mass of the international prototype of the kilogram.' (Adopted by First and Third CGPM 1889 and 1901.)
' Second (s)-The second is the duration of 9192631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium-133 atom. \dagger '" (Adopted by 13th CGPM 1967.)
'Ampere (A)-The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section,
and placed one meter apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per meter of length.' (Adopted by Ninth CGPM 1948.)
''Kelvin (K)-The kelvin, unit of thermodynamic temperature, is the fraction $1 / 273.16$ of the thermodynamic temperature of the triple point of water., ${ }^{3}$ (Adopted by 13th CGPM 1967.)
'"Mole (mol)-The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilograms of carbon-12." (Adopted by 14th CGPM 1971.)
'Note-When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles."
"Candela (cd)-The candela is the luminous intensity in a given direction of a source that emits monochromatic radiation of frequency $540(\mathrm{E}+12)$ hertz (Hz) and that has a radiant intensity in that direction of 1/683 watt per steradian."
"Radian (rad)-The radian is the plane angle between two radii of a circle which cut off on the circumference an arc equal in length to the radius."
'Steradian (sr)-The steradian is the solid angle which, having its vertex at the center of a sphere, cuts off an area of the surface of the sphere equal to that of a square with sides of length equal to the radius of the sphere."
\dagger This definition supersedes the ephemeris second as the unit of time.
Definitions of SI Derived Units
Having Special Names ${ }^{3}$

Physical Quantity
Absorbed dose

Activity

Celsius temperature

Dose equivalent

Electric capacitance
$\frac{\text { Unit and Definition }}{\text { The gray (Gy) is the absorbed }}$ dose when the energy per unit mass imparted to matter by ionizing radiation is $1 \mathrm{~J} / \mathrm{kg}$.
The becquerel (Bq) is the activity of a radionuclide decaying at the rate of one spontaneous nuclear transition per second.
The degree Celsius $\left({ }^{\circ} \mathrm{C}\right)$ is equal to the kelvin and is used in place of the kelvin for expressing Celsius temperature (symbol $T^{\circ} \mathrm{C}$) defined by $T^{\circ} \mathrm{C}=T_{\mathrm{K}}-T_{0}$, where T_{K} is the themodynamic temperature and $T_{0}=273.15 \mathrm{~K}$ by definition.
The sievert is the dose equivalent when the absorbed dose of ionizing radiation multiplied by the dimensionless factors Q (quality factor) and N (product of any other multiplying factors) stipulated by the Intl. Commission on Radiological Protection is $1 \mathrm{~J} / \mathrm{kg}$.
The farad (F) is the capacitance of a capacitor between the plates of which there appears a difference of potential of 1 V when it is charged by a quantity of electricity equal to 1 C .

Electric	The siemens (S) is the electric conductance conductance of a conductor in which a current of 1 A is pro- duced by an electric potential difference of 1 V.
The henry (H) is the inductance	
Electric inductance	
of a closed circuit in which an	
electromotive force of 1 V is	
produced when the electric cur-	
rent in the circuit varies uniform-	
ly at a rate of $1 \mathrm{~A} / \mathrm{s}$.	

the force exerted on an element of current is equal to the vector product of this element and the magnetic flux density.
Power The watt (W) is the power that represents a rate of energy transfer of $1 \mathrm{~J} / \mathrm{s}$.
Pressure or stress The pascal (Pa) is the pressure or stress of $1 \mathrm{~N} / \mathrm{m}^{2}$.
Electric charge, quantity of electricity

Electric charge is the time integral of electric current; its unit, the coulomb (C), is equal to 1 A•s.

No other SI derived units have been assigned special names at this time.

APPENDIX C ${ }^{3,8 *}$

Style Guide for Metric Usage

Rules for Writing Metric Quantities

Capitals. Units-Unit names, including prefixes, are not capitalized except at the beginning of a sentence or in titles. Note that for "degree Celsius" the word "degree" is lower case; the modifier "Celsius" is always capitalized. The "degree centrigrade" is now obsolete.

Symbols-The short forms for metric units are called unit symbols. They are lower case except that the first letter is upper case when the unit is named for a person. (An exception to this rule in the U.S. is the symbol L for liter.)
$\begin{array}{lccc}\text { Examples: } & \begin{array}{ll}\text { Unit Name } & \\ & \text { meter }\end{array} \text { Unit Symbol } \\ & \text { gram } & & \mathrm{m} \\ & \text { newton } & & \mathrm{N} \\ & \text { pascal } & & \mathrm{Pa}\end{array}$
Printed unit symbols should have Roman (upright) letters, because italic (sloping or slanted) letters are reserved for quantity symbols, such as m for mass and L for length.
Prefix Symbols-All prefix names, their symbols, and pronunciation are listed in Table 1.4. Notice that the top five are upper case and all the rest lower case.

The importance of following the precise use of uppercase and lower-case letters is shown by the following examples of prefixes and units.

> G for giga; g for gram.
> K for kelvin; k for kilo.
> M for mega; m for milli.
> N for newton; n for nano.
> T for tera; t for tonne (metric ton).

Information Processing-Limited Character SetsPrefixes and unit symbols retain their prescribed forms regardless of the surrounding typography, except for systems with limited character sets. ISO has provided a standard ${ }^{12}$ for such systems; this standard is recommended.

Plurals and Fractions. Names of SI units form their plurals in the usual manner, except for lux, hertz, and siemens.

Values less than one take the singular form of the unit name; for example, 0.5 kilogram or $1 / 2$ kilogram. While decimal notation $(0.5,0.35,6.87)$ is generally preferred, the most simple fractions are acceptable, such as those where the denominator is $2,3,4$, or 5 .

Symbols of units are the same in singular and plural-e.g., 1 m and 100 m .

Periods. A period is not used after a symbol, except at the end of a sentence. Examples: "A current of 15 mA is found..." "The field measured $350 \times 125 \mathrm{~m}$."

The Decimal Marker. ISO specifies the comma as the decimal marker ${ }^{9}$; in English-language documents a dot on the line is acceptable. In numbers less than one, a zero should be written before the decimal sign (to prevent the possibility that a faint decimal sign will be overlooked). Example: The oral expression '"point seven five'" is written 0.75 or 0,75 .

Grouping of Numbers. Separate digits into groups of three, counting from the decimal marker. A comma should not be used between the groups of three ${ }^{9}$; instead, a space is left to avoid confusion, since the comma is the ISO standard for the decimal marker.

In a four-digit number, the space is not required unless the four-digit number is in a column with numbers of five digits or more:

For	$4,720,525$	write	4720525
For	0.52875	write	0.52875
For	6,875	write	6875 or 6875
For	0.6875	write	0.6875 or
			0.6875

*Ref. 8 is primary source
"The spellings "metre" and "litre" are preferred by ISO but "meter" and "liter" are official U.S. government spellings.

Spacing. In symbols or names for units having prefixes, no space is left between letters making up the symbol or the name. Examples are kA , kiloampere; and mg, milligram.

When a symbol follows a number to which it refers, a space must be left between the number and the symbol, except when the symbol (such as ${ }^{\circ}$) appears in the superscript position. Examples: $455 \mathrm{kHz}, 22 \mathrm{mg}, 20$ $\mathrm{mm}, 10^{6} \mathrm{~N}, 30 \mathrm{~K}, 20^{\circ} \mathrm{C}$.

When a quantity is used as an adjective, a hyphen should be used between the number and the symbol (except ${ }^{\circ} \mathrm{C}$). Examples: It is a $35-\mathrm{mm}$ film; the film width is 35 mm . I bought a 6-kg turkey; the turkey weighs 6 kg .

Leave a space on each side of signs for multiplication, division, addition, and subtraction, except within a compound symbol. Examples: $4 \mathrm{~cm} \times 3 \mathrm{~m}$ (not $4 \mathrm{~cm} \times 3 \mathrm{~m}$); $\mathrm{kg} / \mathrm{m}^{3} ; \mathrm{N} \cdot \mathrm{m}$.

Powers. For unit names, use the modifier squared or cubed after the unit name (except for area and volume)-e.g., meter per second squared. For area or volume, place a modifier before the unit name, including in derived units:-e.g., cubic meter and watt per square meter.

For unit symbols, write the symbol for the unit followed by the power superscript-e.g., $14 \mathrm{~m}^{2}$ and 26 cm^{3}.

Compound Units. For a unit name (not a symbol) derived as a quotient (e.g., for kilometers per hour), it is preferable not to use a slash (/) as a substitute for ''per'' except where space is limited and a symbol might not be understood. Avoid other mixtures of words and symbols. Examples: Use meter per second, not m / s. Use only one 'per'' in any combination of units-e.g., meter per second squared, not meter per second per second.

For a unit symbol derived as a quotient do not, for example, write k.p.h. or kph for km / h because the first two are understood only in the English language, whereas km / h is used in all languages. The symbol km / h also can be written with a negative exponent-e.g., $\mathrm{km} \cdot \mathrm{h}^{-1}$.
Never use more than one slash (/) in any combination of symbols unless parentheses are used to avoid ambiguity; examples are $\mathrm{m} / \mathrm{s}^{2}$, not $\mathrm{m} / \mathrm{s} / \mathrm{s} ; \mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$, not W/m/K.
For a unit name derived as a product, a space or a hyphen is recommended but never a "product dot" (a period raised to a centered position)-e.g., write newton meter or newton-meter, not newton-meter. In the case of the watt hour, the space may be omitted-watthour.

For a unit symbol derived as a product, use a product dot-e.g., $\mathrm{N} \cdot \mathrm{m}$. For computer printouts, automatic typewriter work, etc., a dot on the line may be used. Do not use the product dot as a multiplier symbol for calculations-e.g., use 6.2×5, not $6.2 \cdot 5$.

Do not mix nonmetric units with metric units, except those for time, plane angle, or rotation-e.g., use $\mathrm{kg} / \mathrm{m}^{3}$, not $\mathrm{kg} / \mathrm{ft}^{3}$ or $\mathrm{kg} / \mathrm{gal}$.
A quantity that constitutes a ratio of two like quantities should be expressed as a fraction (either common or decimal) or as a percentage-e.g., the slope is $1 / 100$ or 0.01 or 1%, not $10 \mathrm{~mm} / \mathrm{m}$ or $10 \mathrm{~m} / \mathrm{km}$.

SI Prefix Usage. General-SI prefixes should be used to indicate orders of magnitude, thus eliminating nonsignificant digits and leading zeros in decimal fractions and providing a convenient alternative to the powersof 10 notation preferred in computation. For example, 12300 m (in computations) becomes 12.3 km (in noncomputation situations); $0.0123 \mu \mathrm{~A}\left(12.3 \times 10^{-9} \mathrm{~A}\right.$ for computations) becomes 12.3 nA (in noncomputation situations).

Selection-When expressing a quantity by a numerical value and a unit, prefixes should be chosen so that the numerical value lies between 0.1 and 1000. Generally, prefixes representing steps of 1000 are recommended (avoiding hecto, deka, deci, and centi). However, some situations may justify deviation from the above:

1. In expressing units raised to powers (such as area, volume and moment) the prefixes hecto, deka, deci, and centi may be required-e.g., cubic centimeter for volume and cm^{4} for moment.
2. In tables of values of the same quantity, or in a discussion of such values within a given context, it generally is preferable to use the same unit multiple throughout.
3. For certain quantities in particular applications, one certain multiple is used customarily; an example is the millimeter in mechanical engineering drawings, even when the values lie far outside the range of 0.1 to 1000 mm .

Powers of Units-An exponent attached to a symbol
containing a prefix indicates that the multiple or submultiple of the unit (the unit with its prefix) is raised to the power expressed by the exponent. For example,

$1 \mathrm{~cm}^{3}$	$=\left(10^{-2} \mathrm{~m}\right)^{3}$	$=10^{-6} \mathrm{~m}^{3}$
$1 \mathrm{~ns}^{-1}$	$=\left(10^{-9} \mathrm{~s}\right)^{-1}$	$=10^{9} \mathrm{~s}^{-1}$
$1 \mathrm{~mm}^{2} / \mathrm{s}$	$=\left(10^{-3} \mathrm{~m}\right)^{2} / \mathrm{s}$	$=10^{-5} \mathrm{~m}^{2} / \mathrm{s}$

Double Prefixes-Double or multiple prefixes should not be used. For example,
use GW (gigawatt), not kMW;
use pm (picometer), not $\mu \mu \mathrm{m}$;
use Gg (gigagram), not Mkg;
use 13.58 m , not 13 m 580 mm .
Prefix Mixtures-Do not use a mixture of prefixes unless the difference in size is extreme. For example, use 40 mm wide and 1500 mm long, not 40 mm wide and 1.5 m long; however, 1500 m of 2 -mm-diameter wire is acceptable.
Compound Units-It is preferable that prefixes not be used in the denominators of complex units, except for kilogram (kg) which is a base unit. However, there are cases where the use of such prefixes is necessary to obtain a numerical value of convenient size. Examples of some of these rare exceptions are shown in the tables contained in these standards.
Prefixes may be applied to the numerator of a compound unit; thus, megagram per cubic meter $\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$, but not kilogram per cubic decimeter ($\mathrm{kg} / \mathrm{dm}^{3}$) nor gram per cubic centimeter $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$. Values required outside the range of the prefixes should be expressed by powers of 10 applied to the base unit.
Unit of Mass-Among the base units of SI, the kilogram is the only one whose name, for historical reasons, contains a prefix; it is also the coherent SI unit for mass (See Appendices A and B for discussions of coherence.) However, names of decimal multiples and submultiples of the unit of mass are formed by attaching prefixes to the word "gram."
Prefixes Alone-Do not use a prefix without a unit-e.g., use kilogram, not kilo.
Calculations-Errors in calculations can be minimized if, instead of using prefixes, the base and the coherent derived SI units are used, expressing numerical values in powers-of-10 notation-e.g., $1 \mathrm{MJ}=10^{6} \mathrm{~J}$.

Spelling of Vowel Pairs. There are three cases where the final vowel in a prefix is omitted: megohm, kilohm, and hectare. In all other cases, both vowels are retained and both are pronounced. No space or hyphen should be used.

Complicated Expressions. To avoid ambiguity in complicated expressions, symbols are preferred over words.

Attachment. Attachment of letters to a unit symbol for giving information about the nature of the quantity is incorrect: MWe for "megawatts electrical (power)," kPag for "kilopascals gauge (pressure)," Paa for "pascals absolute (pressure)," and Vac for "volts ac" are not acceptable. If the context is in doubt on any units used, supplementary descriptive phrases should be added to making the meanings clear.

Equations. When customary units appear in equations, the SI equivalents should be omitted. Instead of inserting the latter in parentheses, as in the case of text or small tables, the equations should be restated using SI unit symbols, or a sentence, paragraph, or note should be added stating the factor to be used to convert the calculated result in customary units to the preferred SI units.

Pronunciation of Metric Terms

The pronunciation of most of the unit names is well known and uniformly described in American dictionaries, but four have been pronounced in various ways. The following pronunciations are recommended:

$$
\begin{array}{ll}
\text { candela } & \begin{array}{l}
\text { - Accent on the second syllable and } \\
\text { pronounce it like dell. }
\end{array} \\
\text { joule with pool. } \\
\text { - Pronounce it to rhyme was } & \text { - The preferred pronunciation rhymes } \\
\text { with rascal. An acceptable second } \\
\text { choice puts the accent on the second } \\
\text { syllable. }
\end{array}
$$

For pronunciation of unit prefixes, see Table 1.4.

Typewriting Recommendations

Superscripts. The question arises of how numerical superscripts should be typed on a machine with a conventional keyboard. With an ordinary keyboard, numerals and the minus sign can be raised to the superscript position by rolling the platen half a space before typing the numeral, using care to avoid interference with the text in the line above.

Special Characters. For technical work, it is useful to have Greek letters available on the typewriter. If all SI symbols for units are to be typed properly, a key with the upright Greek lower-case μ (pronounced 'mew,'" not ' $m o o$ ')) is necessary, since this is the symbol for micro, meaning one millionth. The symbol can be approximated on a conventional machine by using a lower-case u and adding the tail by hand (μ). A third choice is to spell out the unit name in full.

For units of electricity, the Greek upper case omega (Ω) for ohm also will be useful; when it is not available, the word "ohm" can be spelled out.

It is fortunate that, except for the more extensive use of the Greek μ for micro and Ω for ohm, the change to SI units causes no additional difficulty in manuscript preparation.

The Letter for Liter. On most U.S. typewriters, there is little difference between the lower-case "el" (" 1 ") and the numerical "one" (" 1 '). The European symbol for liter is a simple upright bar; the Canadians ${ }^{13}$ employed an upright script ℓ but now have adopted the upright capital L; ANSI now recommends the upright capital L.

Typewriter Modification. Where frequently used, the following symbols could be included on typewriters: superscripts ${ }^{2}$ and ${ }^{3}$ for squared and cubed; Greek μ for micro; ${ }^{\circ}$ for degree; • for a product dot (not a period) for symbols derived as a product; and Greek Ω for ohm.

A special type-b.ll that contains all the superscripts, μ, Ω, and other characters used in technical reports is vailable for some typewriters. Some machines have replaceable character keys.

Longhand. To assure legibility of the symbols, m, n, and μ, it is recommended that these three symbols be written to resemble printing. For example, write nm, not $n \mathrm{~m}$. The symbol μ should have a long distinct tail and should have the upright form (not sloping or italic).

Shorthand. Stenographers will find that the SI symbols generally are quicker to write than the shorthand forms for the unit names.

APPENDIX D

General Conversion Factors*

General

The accompanying Table 1.7 is intended to serve two purposes:

1. To express the definitions of general units of measure as exact numerical multiples of coherent "metric" units. Relationships that are exact in terms of the fundamental SI unit are followed by an asterisk. Relationships that are not followed by an asterisk either are the result of physical measurements or are only approximate.
2. To provide multiplying factors for converting expressions of measurements given by numbers and general or miscellaneous units to corresponding new numbers and metric units.

- Based on ASTM Pub. E380-82 (Ref. 3); values of conversion factors tabulated herewith are identical with those in E380-82; generally similar material is found in Ref. 4. Conversion values in earlier editions of E 380 (for example, E 380-74) are based on Ref. 15, which has available some factors with more than seven digits.

Notation

Conversion factors are presented for ready adaptation to computer readout and electronic data transmission. The factors are written as a number equal to or greater than one and less than 10, with six or fewer decimal places (i.e., seven or fewer total digits). Each number is followed by the letter E (for exponent), a plus or minus symbol, and two digits that indicate the power of 10 by which the number must be multiplied to obtain the correct value. For example,
$3.523907(\mathrm{E}-02)$ is 3.523907×10^{-2}
or
0.03523907.

Similarly,
$3.386389(\mathrm{E}+03)$ is 3.386389×10^{3}
or
3 386.389.
An asterisk $\left(^{*}\right)$ after the numbers shown indicates that the conversion factor is exact and that all subsequent digits (for rounding purposes) are zero. All other conversion factors have been rounded to the figures given in accordance with procedures outlined in the preceding text.

Where less than six decimal places are shown, more precision is not warranted.
The following is a further example of the use of Table 1.7.

To Convert From	To	Multiply By
pound-force per square foot pound-force per	Pa	$4.788026 \mathrm{E}+01$
square inch	Pa	$6.894757 \mathrm{E}+03$
inch	m	2.540* E-02

These conversions mean
$1 \mathrm{lbf} / \mathrm{ft}^{2}$ becomes 47.88026 Pa ,
$1 \mathrm{lbf} / \mathrm{in} .^{2}$ becomes 6.894 .757 Pa or
6.894757 kPa , and

1 inch becomes 0.0254 m (exactly).
The unit symbol for pound-force sometimes is written lbf and sometimes lb_{f} or lb_{f}; the form lbf is recommended.

Organization

The conversion factors generally are listed alphabetically by units having specific names and compound units derived from these specific units. A number of units starting with the pound symbol (lb) are located in the ' p " section of the list.

Conversion factors classified by physical quantities are listed in Refs. 3 and 4.
The conversion factors for other compound units can be generated easily from numbers given in the alphabetical list by substitution of converted units. For example:

1. Find the conversion factor for productivity index, (B/D)/(lbf/in. ${ }^{2}$) to $\left(\mathrm{m}^{3} / \mathrm{d}\right) / \mathrm{Pa}$. Convert $1 \mathrm{~B} / \mathrm{D}$ to $1.589873(\mathrm{E}-01) \mathrm{m}^{3} / \mathrm{d}$ and $1 \mathrm{lbf} / \mathrm{in} .^{2}$ to 6.894757 $(E+03) \mathrm{Pa}$. Then, substitute

$$
\begin{gathered}
{[1.589873(\mathrm{E}-01)] /[6.894757(\mathrm{E}-03)]} \\
=2.305916(\mathrm{E}-05)\left(\mathrm{m}^{3} / \mathrm{d}\right) / \mathrm{Pa} .
\end{gathered}
$$

2. Find the conversion factor for tonf•mile/ft to MJ / m. Convert 1 tonf to $8.896444(\mathrm{E}+03) \mathrm{N} ; 1 \mathrm{mile}$ to 1.609 344* ($\mathrm{E}+03$) m; and 1 ft to 3.048* ($\mathrm{E}-01$) m. Then, substitute

$$
\begin{aligned}
& {[8.896444(\mathrm{E}+03)][1.609344(\mathrm{E}+03)]} \\
& \div[3.048(\mathrm{E}-01)] \\
& \quad=4.697322(\mathrm{E}+07)(\mathrm{N} \cdot \mathrm{~m}) / \mathrm{m} \text { or } \mathrm{J} / \mathrm{m} \\
& \quad=4.697322(\mathrm{E}+01) \mathrm{MJ} / \mathrm{m}
\end{aligned}
$$

When conversion factors for complex compound units are being calculated from Table 1.7, numerical uncertainties may be present in the seventh (or lesser last 'significant'") digit of the answer because of roundings already taken for the last digit of tabulated values. Mechtly ${ }^{15}$ provides conversion factors of more than seven digits for certain quantities.

TABLE 1.7-ALPHABETICAL LIST OF UNITS
(symbols of SI units given in parentheses)

To Convert From	To	Multiply By**	
abampere	ampere (A)	1.0*	$\mathrm{E}+01$
abcoulomb	coulomb (C)	1.0*	E+01
abfarad	farad (F)	1.0*	$E+09$
abhenry	henry (H)	1.0^{*}	E-09
abmho	siemens (S)	1.0*	E+09
abohm	ohm (Ω)	$1.0 *$	E-09
abvolt	volt (V)	1.0*	E-08
acre-foot (U.S. survey) ${ }^{(1)}$	meter ${ }^{3}\left(m^{3}\right)$	1.233489	E+03
acre (U.S. survey) ${ }^{(1)}$	meter ${ }^{(} \mathrm{m}^{2}$)	4.046873	$\mathrm{E}+03$
ampere hour	coulomb (C)	3.6*	E+03
are	meter ${ }^{2}\left(\mathrm{~m}^{2}\right)$	1.0*	$\mathrm{E}+02$
angstrom	meter (m)	1.0*	E-10
astronomical unit	meter (m)	1.495979	E+11
atmosphere (standard)	pascal (Pa)	$1.013250 *$	E+05
atmosphere (technical $=1 \mathrm{kgf} / \mathrm{cm}^{2}$)	pascal (Pa)	9.806 650*	E+04
bar	pascal (Pa)	1.0*	$\mathrm{E}+05$
barn	meter ${ }^{(} \mathrm{m}^{2}$)	1.0*	E-28
barrel (for petroleum, 42 gal)	meter ${ }^{(} \mathrm{m}^{3}$)	1.589873	E-01
board foot	meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$	2.359737	E-03
British thermal unit (International Table) ${ }^{(2)}$	joule (J)	1.055056	$\mathrm{E}+03$
British thermal unit (mean)	joule (J)	1.05587	E+03
British thermal unit (thermochemical)	joule (J)	1.054350	E+03
British thermal unit (39 ${ }^{\circ} \mathrm{F}$)	joule (J)	1.05967	$\mathrm{E}+03$
British thermal unit ($59^{\circ} \mathrm{F}$)	joule (J)	1.05480	E+03
British thermal unit ($60^{\circ} \mathrm{F}$)	joule (J)	1.05468	$E+03$
Btu (International Table)-ft/(hr-ft2- ${ }^{\circ} \mathrm{F}$) (thermal conductivity)	watt per meter kelvin [W/(m.K)]	1.730735	$E+00$
Btu (thermochemical)-ft/(hr-ft2- ${ }^{\circ} \mathrm{F}$) (thermal conductivity)	watt per meter kelvin [W/(m.K)]	1.729577	$E+00$
Btu (International Table)-in./(hr- $\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}$) (thermal conductivity)	watt per meter kelvin [W/(m-K)]	1.442279	E-01
Btu (thermochemical)-in./($\mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}$) (thermal conductivity)	watt per meter kelvin [W/(m•K)]	1.441314	E-01
Btu (International Table)-in./(s-ft ${ }^{2}-{ }^{\circ} \mathrm{F}$) (thermal conductivity)	watt per meter kelvin [W/(m•K)]	5.192204	E+02
Btu (thermochemical)-in./(s-ft ${ }^{2}-{ }^{\circ} \mathrm{F}$) (thermal conductivity)	watt per meter kelvin [W/(m-K)]	5.188732	E+02
Btu (International Table)/hr	watt (W)	2.930711	E-01
Btu (thermochemical)/hr	watt (W)	2.928751	E-01
Btu (thermochemical)/min	watt (W)	1.757250	E+01
Btu (thermochemical)/s	watt (W)	1.054350	E+03
Btu (International Table)/ft ${ }^{2}$	joule per meter ${ }^{2}\left(\mathrm{~J} / \mathrm{m}^{2}\right)$	1.135653	E+04
Btu (thermochemical)/ft ${ }^{2}$	joule per meter ${ }^{2}\left(\mathrm{~J} / \mathrm{m}^{2}\right)$	1.134893	E+04
Btu (thermochemical)/(ft²-hr)	watt per meter ${ }^{2}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$	3.152481	$E+00$
Btu (thermochemical)/(ft²-min)	watt per meter ${ }^{2}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$	1.891489	E+02
Btu (thermochemical)/(ft ${ }^{2}-\mathrm{s}$)	watt per meter ${ }^{2}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$	1.134893	E+04
Btu (thermochemical)/(in. ${ }^{2}$-s)	watt per meter ${ }^{2}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$	1.634246	E+06
Btu (International Table)/(hr- $\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}$) (thermal conductance)	watt per meter ${ }^{2}$ kelvin [W/($\left.\mathrm{m}^{2} \cdot \mathrm{~K}\right)$]	5.678263	E+00
Btu (thermochemical)/(hr-ft ${ }^{2}{ }^{\circ} \mathrm{F}$) (thermal conductance)	watt per meter ${ }^{2}$ kelvin [W/($\left.\mathrm{m}^{2} \cdot \mathrm{~K}\right)$]	5.674466	E+00
Btu (International Table)/(s-ftt ${ }^{-}{ }^{\circ} \mathrm{F}$)	watt per meter ${ }^{2}$ kelvin $\left[W /\left(m^{2} \cdot \mathrm{~K}\right)\right]$	2.044175	$\mathrm{E}+04$
Btu (thermochemical)/(s- $\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}$)	watt per meter ${ }^{2}$ kelvin [W/($\left.\mathrm{m}^{2} \cdot \mathrm{~K}\right)$]	2.042808	E+04
Btu (International Table)/lbm	joule per kilogram (J/kg)	$2.326 *$	$\mathrm{E}+03$
Btu (thermochemical)/lbm	joule per kilogram (J / kg)	2.324444	E+03
Btu (International Table)/(Ibm- ${ }^{\circ}$ F) (heat capacity)	joule per kilogram kelvin [J/(kg-K)]	4.186 8* $^{\text {* }}$	E+03
Btu (thermochemical)/(lbm- ${ }^{\circ} \mathrm{F}$) (heat capacity)	joule per kilogram kelvin [J/(kg-K)]	4.184000	E+03
\cdots See footnote on Page 13.			
${ }^{(1)}$ Since 1893 the U.S. basis of length measurement has discrepancies both in this country and abroad, which million. At the same time it was decided that any dat $(1 \mathrm{tt}=1200 / 3937 \mathrm{~m}$) until further decision. This foot is factors for the land measure given below may be de	d from metric standards. In 1959 a small refinem gth from $3600 / 3937 \mathrm{~m}$ to 0.9144 m exactly. This re from and published as a result of geodetic surve . survey foot. As a result, all U.S. land measuremen renced to this footnote are based on the U.S. sur the following relationships: $\begin{aligned} 1 \text { league } & =3 \text { miles (exactly) } \\ 1 \text { rod } & =161 / 2 \mathrm{ft} \text { (exactly) } \\ 1 \text { chain } & =66 \mathrm{ft} \text { (exactly) } \\ 1 \text { section } & =1 \mathrm{sq} \text { mile } \\ 1 \text { township } & =36 \mathrm{sq} \text { miles. } \end{aligned}$	definition of the being shorter by uld remain with th international fo	yard to resolve y two parts in a he old standaro he meter by the ot. Conversion

TABLE 1.7-ALPHABETICAL LIST OF UNITS (cont'd.) (symbols of SI units given in parentheses)

To	Multiply ${ }^{\text {By** }}$	
meter ${ }^{3}\left(m^{3}\right)$	3.523907	E-02
meter (m)	2.54*	E-02
joule (J)	4.1868^{*}	E+00
joule (J)	4.19002	$E+00$
joule (J)	4.184*	$E+00$
joule (J)	4.18580	E+00
joule (J)	4.18190	$E+00$
joule (J)	4.1868^{*}	E+03
joule (J)	4.19002	E+03
joule (J)	4.184^{*}	$E+03$
joule per meter ${ }^{2}\left(\mathrm{~J} / \mathrm{m}^{2}\right)$	4.184*	$\mathrm{E}+04$
joule per kilogram (J/kg)	4.186*	$\mathrm{E}+03$
joule per kilogram (J/kg)	4.184*	E+03
joule per kilogram kelvin [J/(kg-K)]	4.1868^{*}	E+03
joule per kilogram kelvin [$\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$]	4.184*	E+03
watt (W)	6.973333	E-02
watt (W)	4.184*	E+00
watt per meter ${ }^{2}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$	6.973333	E+02
watt per meter ${ }^{2}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$	4.184^{*}	E+04
watt per meter kelvin [W/(m-K)]	4.184*	E+02
per meter (m^{-1})	1.0*	E-01
kilogram (kg)	2.0*	E-04
pascal (Pa)	1.33322	E+03
pascal (Pa)	9.80638	E+01
pascal second (Pa.s)	1.0*	E-03
meter ${ }^{2}$ per second ($\mathrm{m}^{2} / \mathrm{s}$)	1.0*	E-06
meter ${ }^{2}\left(\mathrm{~m}^{2}\right)$	5.067075	E-10
kelvin meter ${ }^{2}$ per watt [$\left(\mathrm{K} \cdot \mathrm{m}^{2}\right) / \mathrm{W}$]	2.003712	E-01
meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$	2.365882	E-04
becquerel (Bq)	$3.7 *$	E+10
hertz (Hz)	1.0*	$E+00$
second (s)	8.640000	E+04
second (s)	8.616409	$E+04$
radian (rad)	1.745329	E-02
kelvin (K)	$T_{\mathrm{K}}=T_{\text {c }}{ }^{+}+273.1$	
degree Celsius	$T_{\text {c }}^{\text {c }}$ ($=\left(T_{\text {F }}-32\right) /$	
kelvin (K)	$T_{\mathrm{K}}=\left(T_{\mathrm{F}}{ }^{\text {F }}+459.67\right.$	67)/1.8
kelvin (K)	$T_{\mathrm{k}}=T_{\text {\% }} / 1.8$	
kelvin meter ${ }^{2}$ per watt [(K-m²)/W]	1.781102	E-01
kelvin meter ${ }^{2}$ per watt [$\left(\mathrm{K} \cdot \mathrm{m}^{2}\right) / \mathrm{W}$]	1.762250	E-01
kilogram per meter (kg / m)	1.111111	E-07
newton (N)	1.0*	E-05
newton meter ($\mathrm{N} \cdot \mathrm{m}$)	1.0*	E-07
pascal (Pa)	1.0*	E-01
joule (J)	1.60219	E-19
farad (F)	1.0*	E+09
ampere (A)	1.0*	E+01
volt (V)	1.0*	E-08
henry (H)	1.0*	E-09
ohm (Ω)	1.0*	E-09
farad (F)	1.112650	E-12
ampere (A)	3.3356	E-10
volt (V)	2.9979	E+02
henry (H)	8.987554	E+11
ohm (Ω)	8.987554	E+11
joule (J)	1.0*	E-07
watt per meter ${ }^{2}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$	1.0*	E-03
watt (W)	1.0*	E-07
coulomb (C)	9.64870	E+04
coulomb (C)	9.64957	E+04
coulomb (C)	9.65219	E+04
meter (m)	1.8288	$\mathrm{E}+00$
meter (m)	1.0*	E-15
meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$	2.957353	E-05
meter (m) meter (m)	$\begin{aligned} & 3.048^{*} \\ & 3.048006 \end{aligned}$	$\begin{aligned} & E-01 \\ & E-01 \end{aligned}$

TABLE 1.7-ALPHABETICAL LIST OF UNITS (cont'd.)

(symbols of SI units given in parentheses)

To Convert From	To
```foot of water (39.2 }\mp@subsup{}{}{\circ}\textrm{F} sq ft ft}/hr (thermal diffusivity ft```	pascal (Pa)   meter ${ }^{2}\left(\mathrm{~m}^{2}\right)$   meter ${ }^{2}$ per second ( $\mathrm{m}^{2} / \mathrm{s}$ )   meter ${ }^{2}$ per second ( $\mathrm{m}^{2} / \mathrm{s}$ )
```cu ft (volume; section modulus) ft3/min ft/s ftt (moment of section)}\mp@subsup{}{}{(3)```	meter ${ }^{3}\left(m^{3}\right)$   meter ${ }^{3}$ per second ( $\mathrm{m}^{3} / \mathrm{s}$ )   meter ${ }^{3}$ per second ( $\mathrm{m}^{3} / \mathrm{s}$ )   meter ( $\mathrm{m}^{4}$ )
$\mathrm{ft} / \mathrm{hr}$ $\mathrm{ft} / \mathrm{min}$ ft / s $\mathrm{ft} / \mathrm{s}^{2}$ footcandle footlambert	meter per second (m / s) meter per second (m / s) meter per second (m / s) meter per second ${ }^{2}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ lux (1 x) candela per meter ${ }^{2}\left(\mathrm{~cd} / \mathrm{m}^{2}\right)$
ft -Ibf $\mathrm{ft}-\mathrm{lbf} / \mathrm{hr}$ $\mathrm{ft}-\mathrm{lbf} / \mathrm{min}$ $\mathrm{ft}-\mathrm{lbf} / \mathrm{s}$ ft-poundal free fall, standard (g)	joule (J) watt (W) watt (W) watt (W) joule (J) meter per second ${ }^{2}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
$\mathrm{cm} / \mathrm{s}^{2}$ gallon (Canadian liquid) gallon (U.K. liquid) gallon (U.S. dry) gallon (U.S. liquid) gal (U.S. liquid)/day gal (U.S. liquid)/min gal (U.S. liquid)/hp•hr (SFC, specific fuel consumption)	meter per second ${ }^{2}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$ meter ${ }^{3}\left(m^{3}\right)$ meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$ meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$ meter ${ }^{3}$ per second ($\mathrm{m}^{3} / \mathrm{s}$) meter ${ }^{3}$ per second ($\mathrm{m}^{3} / \mathrm{s}$) meter ${ }^{3}$ per joule ($\mathrm{m}^{3} / \mathrm{J}$)
gamma (magnetic field strength) gamma (magnetic flux density) gauss gilbert gill (U.K.) gill (U.S.)	ampere per meter (A / m) tesla (T) tesla (T) ampere (A) meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$ meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$
grad grad grain (1/7000 lbm avoirdupois) grain (lbm avoirdupois/7000)/gal (U.S. liquid)	degree (angular) radian (rad) kilogram (kg) kilogram per meter ${ }^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$
gram $\mathrm{g} / \mathrm{cm}^{3}$ gram-force/cm ${ }^{2}$ hectare horsepower ($550 \mathrm{ft}-\mathrm{lbf} / \mathrm{s}$)	kilogram (kg) kilogram per meter ${ }^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$ pascal (Pa) meter ${ }^{2}\left(m^{2}\right)$ watt (W)
horsepower (boiler) horsepower (electric) horsepower (metric) horsepower (water) horsepower (U.K.)	watt (W) watt (W) watt (W) watt (W) watt (W)
hour (mean solar) hour (sidereal) hundredweight (long) hundredweight (short)	second (s) second (s) kilogram (kg) kilogram (kg)
inch inch of mercury ($32^{\circ} \mathrm{F}$) inch of mercury ($60^{\circ} \mathrm{F}$) inch of water ($39.2^{\circ} \mathrm{F}$) inch of water $\left(60^{\circ} \mathrm{F}\right)$	meter (m) pascal (Pa) pascal (Pa) pascal (Pa) pascal (Pa)
sq in. cu in. (volume; section modulus) ${ }^{(4)}$ in. ${ }^{3}$ /min in. ${ }^{4}$ (moment of section) ${ }^{(3)}$	```meter }\mp@subsup{}{}{2}(\mp@subsup{m}{}{2} meter }\mp@subsup{}{}{3}(\mp@subsup{m}{}{3} meter }\mp@subsup{}{}{3}\mathrm{ per second (m}\mp@subsup{}{}{3}/\textrm{s}\mathrm{) meter (m4)```
in./s in. $/ \mathrm{s}^{2}$ kayser kelvin	meter per second (m / s) meter per second ${ }^{2}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ 1 per meter ($1 / \mathrm{m}$) degree Celsius

${ }^{(3)}$ This sometimes is called the moment of inertia of a plane section about
${ }^{(4)}$ The exact conversion factor is $1.6387064^{*} E-05$.

TABLE 1.7-ALPHABETICAL LIST OF UNITS (cont'd.) (symbols of SI units given in parentheses)

${ }^{(5)}$ In 1964 the General Conference on Weights and Measures adopted the name liter as a special name for the cubic decimeter. Prior to this decision the liter differed slightly (previous value, $1.000028 \mathrm{dm}^{3}$) and in expression of precision volume measurement this fact must be kept in mind.
${ }^{(6)}$ Not the same as reservoir "perm."

TABLE 1.7-ALPHABETICAL LIST OF UNITS (cont'd.)

 (symbols of SI units given in parentheses)| To Convert From | To | Multiply By** | |
| :---: | :---: | :---: | :---: |
| $\overline{\text { perm }\left(23{ }^{\circ} \mathrm{C}\right)^{(6)}}$ | kilogram per pascal second meter ${ }^{2}$ [kg/(Pa•s•m²)] | 5.74525 | E-11 |
| perm.in. $\left(0^{\circ} \mathrm{C}\right)^{(7)}$ | kilogram per pascal second meter [kg/(Pa•s•m)] | 1.45322 | E-12 |
| perm.in. $\left(23^{\circ} \mathrm{C}\right)^{(7)}$ | kilogram per pascal second meter [km/(Pa•s•m)] | 1.45929 | E-12 |
| phot | lumen per meter ${ }^{2}\left(1 \mathrm{~m} / \mathrm{m}^{2}\right)$ | 1.0* | E+04 |
| pica (printer's) | meter (m) | 4.217518 | E-03 |
| pint (U.S. dry) | meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$ | 5.506105 | E-04 |
| pint (U.S. liquid) | meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$ | 4.731765 | E-04 |
| point (printer's) | meter (m) | 3.514 598* | E-04 |
| poise (absolute viscosity) | pascal second (Pa.s) | 1.0* | E-01 |
| pound (lbm avoirdupois) ${ }^{(8)}$ | kilogram (kg) | 4.535924 | E-01 |
| pound (troy or apothecary) | kilogram (kg) | 3.732417 | E-01 |
| $\mathrm{lbm}-\mathrm{ft}^{2}$ (moment of inertia) | kilogram meter ${ }^{2}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$ | 4.214011 | E-02 |
| lbm -in. ${ }^{2}$ (moment of inertia) | kilogram meter ${ }^{2}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$ | 2.926397 | E-04 |
| lbm/tt-hr | pascal second (Pa.s) | 4.133789 | E-04 |
| $\mathrm{lbm} / \mathrm{ft}-\mathrm{s}$ | pascal second (Pas) | 1.488164 | $E+00$ |
| $\mathrm{lbm} / \mathrm{ft}^{2}$ | kilogram per meter ${ }^{2}\left(\mathrm{~kg} / \mathrm{m}^{2}\right)$ | 4.882428 | E+00 |
| $\mathrm{lbm} / \mathrm{ft}^{3}$ | kilogram per meter ${ }^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$ | 1.601846 | $\mathrm{E}+01$ |
| $\mathrm{lbm} / \mathrm{gal}$ (U.K. liquid) | kilogram per meter ${ }^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$ | 9.977633 | E+01 |
| $\mathrm{lbm} / \mathrm{gal}$ (U.S. liquid) | kilogram per meter ${ }^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$ | 1.198264 | $E+02$ |
| $\mathrm{lbm} / \mathrm{hr}$ | kilogram per second (kg/s) | 1.259979 | E-04 |
| $\mathrm{lbm} /(\mathrm{hp} \cdot \mathrm{hr})$ (SFC, specific fuel consumption) | kilogram per joule (kg/J) | 1.689659 | E-07 |
| $\mathrm{lbm} / \mathrm{in} .^{3}{ }^{3}$ | kilogram per meter ${ }^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$ | 2.767990 | E+04 |
| $1 \mathrm{bm} / \mathrm{min}$ | kilogram per second (kg/s) | 7.559873 | E-03 |
| $\mathrm{lbm} / \mathrm{s}$ | kilogram per second (kg/s) | 4.535924 | E-01 |
| $\mathrm{lbm} / \mathrm{yd}^{3}$ | kilogram per meter ${ }^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$ | 5.932764 | E-01 |
| poundal | newton (N) | 1.382550 | E-01 |
| poundal/ft ${ }^{2}$ | pascal (Pa) | 1.488164 | $E+00$ |
| poundal-s/ft ${ }^{2}$ | pascal second (Pas) | 1.488164 | $E+00$ |
| pound-force (lbf$)^{(9)}$ | newton (N) | 4.448222 | $E+00$ |
| lbf-ft ${ }^{(10)}$ | newton meter ($\mathrm{N} \cdot \mathrm{m}$) | 1.355818 | $E+00$ |
| lbf-ftim. ${ }^{(11)}$ | newton meter per meter [($\mathrm{N} \cdot \mathrm{m}$)/m)] | 5.337866 | $\mathrm{E}+01$ |
| lbf-in. ${ }^{(11)}$ | newton meter ($\mathrm{N} \cdot \mathrm{m}$) | 1.129848 | E-01 |
| lbf-in./in. ${ }^{(11)}$ | newton meter per meter [(N.m)/m] | 4.448222 | $E+00$ |
| $\mathrm{bbf}-\mathrm{s} / \mathrm{ft}^{2}$ | pascal second (Pass) | 4.788026 | E+01 |
| $\mathrm{lb} / \mathrm{/t}$ | newton per meter (N / m) | 1.459390 | E+01 |
| $\mathrm{lbf} / \mathrm{tt}^{2}$ | pascal (Pa) | 4.788026 | $E+01$ |
| lbf/in. | newton per meter (N / m) | 1.751268 | E+02 |
| $\mathrm{lbf} / \mathrm{in} .^{2}$ (psi) | pascal (Pa) | 6.894757 | $E+03$ |
| $\mathrm{lbf} / \mathrm{lbm}$ (thrust/weight [mass] ratio) | newton per kilogram (N / kg) | 9.806650 | $E+00$ |
| quart (U.S. dry) | meter ${ }^{(} \mathrm{m}^{3}$) | 1.101221 | E-03 |
| quart (U.S. liquid) | meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$ | 9.463529 | E-04 |
| rad (radiation dose absorbed) | gray (Gy) | $1.0 *$ | E-02 |
| rhe | 1 per pascal second [1/(Pa.s)] | 1.0* | $E+01$ |
| rod | meter (m) | (see Footn | ote 1) |
| roentgen | coulomb per kilogram (C/kg) | 2.58 | E-04 |
| second (angle) | radian (rad) | 4.848137 | E-06 |
| second (sidereal) | second (s) | 9.972696 | E-01 |
| section | meter ${ }^{2}\left(\mathrm{~m}^{2}\right)$ | (see Footn | ote 1) |
| shake | second (s) | 1.000 000* | E-08 |
| slug | kilogram (kg) | 1.459390 | E+01 |
| slug/(ft-s) | pascal second (Pa.s) | 4.788026 | $E+01$ |
| slug/ $/ \mathrm{tt}^{3}$ | kilogram per meter ${ }^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$ | 5.153788 | E+02 |
| statampere | ampere (A) | 3.335640 | E-10 |
| statcoulomb | coulomb (C) | 3.335640 | E-10 |
| statfarad | farad (F) | 1.112650 | E-12 |
| stathenry | henry (H) | 8.987554 | E+11 |
| statmho | siemens (S) | 1.112650 | E-12 |
| statohm | ohm (Ω) | 8.987554 | E+11 |
| statvolt | volt (V) | 2.997925 | $E+02$ |
| stere | meter ${ }^{(} \mathrm{m}^{3}$) | 1.0* | $E+00$ |

${ }^{(7)}$ Not the same dimensions as "millidarcy-foot."
${ }^{(8)}$ The exact conversion factor is $4.5359237^{\circ} \mathrm{E}-01$.
(9) The exact conversion factor is $4.4482216152605^{*} \mathrm{E}+00$.
${ }^{(10)}$ (11) Torque unit; see text discussion of "Torque and Bending Moment."
${ }^{(11)}$ Torque divided by length; see text discussion of "Torque and Bending Moment."

TABLE 1.7-ALPHABETICAL LIST OF UNITS (cont'd.) (symbols of SI units given In parentheses)

To Convert From	To
stilb stokes (kinematic viscosity)	candela per meter ${ }^{2}\left(\mathrm{~cd} / \mathrm{m}^{2}\right)$ meter ${ }^{2}$ per second ($\mathrm{m}^{2} / \mathrm{s}$)
tablespoon teaspoon tex therm	```meter }\mp@subsup{}{}{3}(\mp@subsup{m}{}{3} meter (}\mp@subsup{}{(}{(m) kilogram per meter (kg/m) joule (J)```
ton (assay) ton (long, 2,240 lbm) ton (metric) ton (nuclear equivalent of TNT) ton (refrigeration) ton (register)	kilogram (kg) kilogram (kg) kilogram (kg) joule (J) watt (W) meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$
ton (short, 2000 lbm) ton (long)/yd ${ }^{3}$ ton (short)/hr ton-force (2000 lbf) tonne	kilogram (kg) kilogram per meter ${ }^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$ kilogram per second (kg/s) newton (N) kilogram (kg)
torr ($\mathrm{mm} \mathrm{Hg}, 0^{\circ} \mathrm{C}$) township unit pole watthour (W-hr) W-s $\mathrm{W} / \mathrm{cm}^{2}$ W/in. ${ }^{2}$	pascal (Pa) meter ${ }^{2}\left(\mathrm{~m}^{2}\right)$ weber (Wb) joule (J) joule (J) watt per meter ${ }^{2}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ watt per meter ${ }^{2}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$
yard yd^{2} y^{3} $\mathrm{yd}^{3} / \mathrm{min}$	meter (m) meter ${ }^{2}\left(\mathrm{~m}^{2}\right)$ meter ${ }^{3}\left(m^{3}\right)$ meter ${ }^{3}$ per second ($\mathrm{m}^{3} / \mathrm{s}$)
year (calendar) year (sidereal) year (tropical)	second (s) second (s) second (s)
${ }^{(12)}$ Defined (not measured) value.	

Multiply By**	
1.0*	$E+04$
1.0*	E-04
1.478676	E-05
4.928922	E-06
$1.0 *$	E-06
1.055056	E+08
2.916667	E-02
1.016047	$E+03$
1.0*	E+03
4.184	$E+09^{(12)}$
3.516800	E+03
2.831685	$E+00$
9.071847	$E+02$
1.328939	E+03
2.519958	E-01
8.896444	E+03
1.0*	$E+03$
1.33322	$E+02$
(see Footnote 1)	
1.256637	E-07
3.60*	E+03
1.0*	$E+00$
1.0 *	$E+04$
1.550003	E+03
9.144*	E-01
8.361274	E-01
7.645549	E-01
1.274258	E-02
3.153600	E+07
3.155815	$E+07$
3.155693	$E+07$

APPENDIX E

TABLE 1.8 - CONVERSION FACTORS FOR THE VARA*

Location	Value of Vara in Inches	Conversion Factor, Varas to Meters		Source
Argentina, Paraguay	34.12	8.666	E-01	Ref. 16
Cadiz, Chile, Peru	33.37	8.476	E-01	Ref. 16
California,				
except San Francisco	33.3720	8.47649	E-01	Ref. 16
San Francisco	33.0	8.38	E-01	Ref. 16
Central America	33.87	8.603	E-01	Ref. 16
Colombia	31.5	8.00	E-01	Ref. 16
Honduras	33.0	8.38	E-01	Ref. 16
Mexico		8.380	E-01	Refs. 16 and 17
Portugal, Brazil	43.0	1.09	E+00	Ref. 16
Spain, Cuba, Venezuela, Philippine Islands	33.38**	8.479	E-01	Ref. 17
Texas				
Jan. 26, 1801, to Jan. 27, 1838	32.8748	8.35020	E-01	Ref. 16
Jan. 27, 1838 to June 17, 1919, for surveys of state land made for Land Office	33-1/3	8.466667	E-01	Ref. 16
Jan. 27, 1838 to June 17, 1919, on private surveys (unless changed to $33-1 / 3 \mathrm{in}$. by custom arising				
to dignity of law and overcoming former law)	32.8748	8.35020	E-01	Ref. 16
June 17, 1919, to present	33-1/3	8.466667	E-01	Ref. 16

-It is evident from Ref. 16 that accurate defined lengths of the vara varied significantly, according to historical date and locality used. For work requiring accurate conversions, the user should check closely into the date and location of the surveys involved, with due regard to what local practice may have been at that time and place.
--This value quoted from Webster's New International Dictionary.

TABLE 1.9-"MEMORY JOGGER"—METRIC UNITS

Customary Unit	"BallPark" Metric Values; (Do Not Use As Conversion Factors)	
acre	$\left\{\begin{array}{r}4000 \\ 0.4\end{array}\right.$	square meters hectare
barrel	0.16	cubic meter
British thermal unit	1000	joules
British thermal unit per pound-mass	$\left\{\begin{array}{r}2300 \\ 2.3\end{array}\right.$	joules per kilogram kilojoules per kilogram
calorie	4	joules
centipoise	1*	millipascal-second
centistokes	1*	square millimeter per second
darcy	1	square micrometer
degree Fahrenheit (temperature difference)	0.5	kelvin
dyne per centimeter	1^{*}	millinewton per meter
foot	$\left\{\begin{array}{c} 30 \\ 0.3 \end{array}\right.$	centimeters meter
cubic foot (cu ft)	0.03	cubic meter
cubic foot per pound-mass ($\mathrm{ft}^{3} / \mathrm{lbm}$)	0.06	cubic meter per kilogram
square foot (sq ft)	0.1	square meter
foot per minute	$\left\{\begin{array}{l}0.3 \\ 5\end{array}\right.$	meter per minute millimeters per second
foot-pound-force	1.4	joules
foot-pound-force per minute	0.02	watt
foot-pound-force per second	1.4	watts
horsepower	750	watts (3/4 kilowatt)
horsepower, boiler	10	kilowatts
inch	2.5	centimeters
kilowatthour	3.6*	megajoules
mile	1.6	kilometers
ounce (avoirdupois)	28	grams
ounce (fluid)	30	cubic centimeters
pound-force	4.5	newtons
pound-force per square inch (pressure, psi)	7	kilopascals
pound-mass	0.5	kilogram
pound-mass per cubic foot	$\begin{array}{r} 16 \\ 260 \end{array}$	kilograms per cubic meter hectares
section	2.6	million square meters
	2.6	square kilometers
ton, long (2240 pounds-mass)	1000	kilograms
ton, metric (tonne)	1000*	kilograms
ton, short	900	kilograms
*Exact equivalents		

APPENDIX F

Part 2: Discussion of Metric Unit Standards

Introduction

The standards and conventions shown in Part 1 are part of the SPE tentative standards. Table 2.1 presents nomenclature for Tables 2.2 and 2.3. Table 2.2 is a modified form of a table in API 2564 reflecting SPE recommendations. Table 2.3 shows a few units commonly used in the petroleum industry that are not shown in Table 1.7 and 2.2. The columns in these tables are based on the following.

Quantity and SI Unit. The quantity and the base or derived SI unit that describes that quantity.

Customary Unit. The unit most commonly used in expressing the quantity in English units.

SPE Preferred. The base or derived SI unit plus the approved prefix, if any, that probably will be used most
commonly to achieve convenient unit size. Any approved prefix may be used in combination with an approved SI unit without violation of these standards except where otherwise noted.

Other Allowable. A small, selected list of non-SI units that are approved temporarily for the convenience of the English-metric transition. Use of the allowable units may be discouraged but is not prohibited. Any traditional, non-SI unit not shown is prohibited under these standards.

Conversion Factor. For certain commonly used units, a conversion factor is shown. The primary purpose in these tables is to show how the preferred metric unit compares in size with the traditional unit. An effort has been made to keep the unit sizes comparable to minimize transition difficulties.

A detailed summary of general conversion factors is included as Table 1.7 in Part 1 of this report.

The notation for conversion factors in Tables 2.2 and 2.3 is explained in the introduction to Table 1.7.

Fig. 2.1 shows graphically how SI units are related in a very coherent manner. Although it may not be readily apparent, this internal coherence is a primary reason for adoption of the metric system of units.

The SPE Metrication Subcommittee is endeavoring to provide SPE members with all information needed on the International System of Units and to provide tentative standards (compatible with SI coherence, decimal, and other principles) for the application of the SI system to SPE fields of interest. The tentative SPE standards are intended to reflect reasonable input from many sources, and we solicit your positive input with the assurance that all ideas will receive careful consideration.

Review of Selected Units

Certain of the quantities and units shown in Tables 2.2 and 2.3 may require clarification of usage (see also the notes preceding Tables 2.2 and 2.3).

Time

Although second(s) is the base time unit, any unit of time may be used - minute (min), hour (h), day (d), and year
(a). Note that (a) is used as the abbreviation for year (annum) instead of (yr). The use of the minute as a time unit is discouraged because of abbreviation problems. It should be used only when another time unit is absolutely inappropriate.

Date and Time Designation

The Subcommittee proposes to recommend a standard date and time designation to the American Natl. Standards Inst., as shown below. This form already has been introduced in Canada.

$$
\begin{aligned}
& \text { (76-10-03-16:24:14) }
\end{aligned}
$$

The sequence is orderly and easy to remember; only needed portions of the sequence would be used - most documents would use the first three. No recommendation has been made for distinguishing the century, such as 1976 vs. 1876 vs. 2076.

Area

The hectare (ha) is allowable but its use should be confined to large areas that describe the areal extent of a por-

TABLE 2.1—NOMENCLATURE FOR TABLES 2.2 AND 2.3

Unit Symbol	Name	Quantity
A	ampere	electric current
a	annum (year)	time
Bq	becquerel	activity (of radionuclides)
bar	bar	pressure
C	coulomb	quantity of electricity
cd	candela	luminous intensity
${ }^{\circ} \mathrm{C}$	degree Celsius	temperature
-	degree	plane angle
d	day	time
F	farad	electric capacitance
Gy	gray	absorbed dose
g	gram	mass
H	henry	inductance
h	hour	time
Hz	hertz	frequency
ha	hectare	area
J	joule	work, energy
K	kelvin	temperature
kg	kilogram	mass
. n	knot	velocity
L	liter	volume
Im	lumen	luminous flux
Ix	lux	illuminance
m	meter	length
\min	minute	time
,	minute	plane angle
N	newton	force
naut. mile	U.S. nautical mile	length
Ω	ohm	electric resistance
Pa	pascal	pressure
rad	radian	plane angle
S	siemens	electrical conductance
S	second	time
"	second	plane angle
sr	steradian	solid angle
T	tesla	magnetic flux density
t	tonne	mass
V	volt	electric potential
W	watt	power
Wb	weber	magnetic flux

tion of the earth's crust (normally replacing the acre or section).
Volume
The liter is an allowable unit for small volumes only. It should be used for volumes not exceeding 100 L . Above this volume (or volume rate), cubic meters should be used. The only two prefixes allowed with the liter are "milli" and "micro.'

In the U.S., the "-er'' ending for meter and liter is official. The official symbol for the liter is "L." In other countries the symbol may be written as " ℓ " and spelled out with the "-re"' ending (metre, litre). Since SPE is international, it is expected that members will use local conventions.

Notice that "API barrel" or simply "barrel" disappears as an allowable volume term.

Fig. 2.1—Graphic Relationships of SI Units With Names.

Force

Any force term will use the newton (N). Derived units involving force also require the newton. The expression of force using a mass term (like the kilogram) is absolutely forbidden under these standards.

Mass

The kilogram is the base unit, but the gram, alone or with any approved prefix, is an acceptable SI unit.

For large mass quantities the metric ton (t) may be used. Some call this 'tonne.' However, this spelling sometimes has been used historically to denote a regular short ton $(2,000 \mathrm{lbm})$. A metric ton is also a megagram (Mg). The terms metric ton or Mg are preferred in text references.

Energy and Work

The joule (J) is the fundamental energy unit; kilojoules (kJ) or megajoules (MJ) will be used most commonly. The calorie (large or small) is no longer an acceptable unit under these standards. The kilowatthour is acceptable for a transition period but eventually should be replaced by the megajoule.

Power

The term horsepower disappears as an allowable unit. The kilowatt (kW) or megawatt (MW) will be the multiples of the fundamental watt unit used most commonly.

Pressure

The fundamental pressure unit is the pascal (Pa) but the kilopascal (kPa) is the most convenient unit. The bar (100 kPa) is an allowable unit. The pressure term $\mathrm{kg} / \mathrm{cm}^{2}$ is not allowable under these standards.

Viscosity

The terms poise, centipoise, stokes, and centistokes are no longer used under these standards. They are replaced by the metric units shown in Table 2.2.

Temperature

Although it is permissible to use ${ }^{\circ} \mathrm{C}$ in text references, it is recommended that " K "' be used in graphical and tabular summaries of data.

Density

The fundamental SI unit for density is $\mathrm{kg} / \mathrm{m}^{3}$. Use of this unit is encouraged. However, a unit like kg / L is permissible.

The traditional term "specific gravity" will not be used. It will be replaced by the term "relative density." API gravity disappears as a measure of relative density.

Relative Atomic Mass and Molecular Mass

The traditional terms 'atomic weight'" and "molecular weight' are replaced in the SI system of units by "relative atomic mass'’ and 'relative molecular mass," respectively. See Table 1.6.

Unit Standards Under Discussion

There are some quantities for which the unit standards have not been clarified to the satisfaction of all parties and some controversy remains. These primary quantities are summarized below.

Permeability

The SPE-preferred permeability unit is the square micrometer ($\mu \mathrm{m}^{2}$). One darcy (the traditional unit) equals $0.986923 \mu \mathrm{~m}^{2}$.*

The fundamental SI unit of permeability (in square meters) is defined as follows: "a permeability of one meter squared will permit a flow of $1 \mathrm{~m}^{3} / \mathrm{s}$ of fluid of $1 \mathrm{~Pa} \cdot \mathrm{~s}$ viscosity through an area of $1 \mathrm{~m}^{2}$ under a pressure gradient of $1 \mathrm{~Pa} / \mathrm{m}$.',

The traditional terms of "darcy" and "millidarcy" have been approved as preferred units of permeability. Note 11 of Table 2.2 shows the relationships between traditional and SI units and points out that the units of the darcy and the square micrometer can be considered equivalent when high accuracy is not needed or implied.

Standard Temperature

Some reference temperature is necessary to show certain properties of materials, such as density, volume, viscosity, energy level, etc. Historically, the petroleum industry almost universally has used $60^{\circ} \mathrm{F}\left(15.56^{\circ} \mathrm{C}\right)$ as this reference temperature, and metric systems have used $0^{\circ} \mathrm{C}, 20^{\circ} \mathrm{C}$, and $25^{\circ} \mathrm{C}$ most commonly, depending on the data and the area of specialty.

API has opted for $15^{\circ} \mathrm{C}$ because it is close to $60^{\circ} \mathrm{F}$ ASME has used $20^{\circ} \mathrm{C}$ in some of its metric guides. The bulk of continental European data used for gas and oil correlations is at $0^{\circ} \mathrm{C}$, although $15^{\circ} \mathrm{C}$ is used sometimes.

The SPE Subcommittee feels that the choice between $0^{\circ} \mathrm{C}$ and $15^{\circ} \mathrm{C}$ is arbitrary. Tentatively, a standard of $15^{\circ} \mathrm{C}$ has been adopted simply to conform to API standards. It may be desirable to have a flexible temperature standard for various applications.

Standard Pressure

To date, some groups have opted for a pressure reference of 101.325 kPa , which is the equivalent of one standard atmosphere. The Subcommittee considers this an unacceptable number. Its adoption possesses some short-term convenience advantages but condemns future generations to continual odd-number conversions to reflect the change of pressure on properties. It also violates the powers-of-10 aspect of the SI system, one of its primary advantages.

The current SPE standard is 100 kPa and should be used until further notice. It is our hope that reason will prevail and others will adopt this standard.

Gauge and Absolute Pressure

There is no provision for differentiating between gauge and absolute pressure, and actions by international bodies prohibit showing the difference by an addendum to the unit symbol. The Subcommittee recommends that gauge and absolute be shown using parentheses following p :

$$
p=643 \mathrm{kPa}, \quad p(\mathrm{~g})=543 \mathrm{kPa}
$$

[p is found from $p(\mathrm{~g})$ by adding actual barometric pressure. (100 kPa is suitable for most engineering calculations.)]
In custody transfer the standard pressure will be specified by contract. Unless there is a special reason not to do so, the standard pressure will be 100 kPa to preserve the "multiples of ten'" principle of the metric system.

Standard pressure normally is defined and used as an absolute pressure. So, $p_{s c}=100 \mathrm{kPa}$ is proper notation. Absolute pressure is implied if no (g) is added to denote gauge pressure specifically.

Standard Volumes

Cubic meters at standard reference conditions must be equated to a term with the standard ' $s c$ '' subscript. For example, for a gas production rate of $1200000 \mathrm{~m}^{3} / \mathrm{d}$, write

$$
\begin{aligned}
q_{g s c}= & 1.2 \times 10^{6} \mathrm{~m}^{3} / \mathrm{d} \text { or } 1.2(\mathrm{E}+06) \mathrm{m}^{3} / \mathrm{d} \\
& \text { read as " } 1.2 \text { million cubic meters per day." }
\end{aligned}
$$

If the rate is 1200 cubic meters per day, write

$$
q_{g s c}=1.2 \times 10^{3} \mathrm{~m}^{3} / \mathrm{d}
$$

For gas in place, one could write

$$
G_{s c}=11.0 \times 10^{12} \mathrm{~m}^{3} .
$$

Notes for Table 2.2

1. The cubem (cubic mile) is used in the measurement of very large volumes, such as the content of a sedimentary basin.
2. In surveying, navigation, etc., angles no doubt will continue to be measured with instruments that read out in degrees, minutes, and seconds and need not be converted into radians. But for calculations involving rotational energy, radians are preferred.
3. The unit of a million years is used in geochronology. The mega-annum is the preferred SI unit, but many prefer simply to use mathematical notation (i.e., $\times 10^{6}$).
4. This conversion factor is for an ideal gas.
5. Subsurface pressures can be measured in megapascals or as freshwater heads in meters. If the latter approach is adopted, the hydrostatic gradient becomes dimensionless.
6. Quantities listed under "Facility Throughput, Capacity', are to be used only for characterizing the size or capacity of a plant or piece of equipment. Quantities listed under "Flow Rate"' are for use in design calculations.
7. This conversion factor is based on a density of 1.0 $\mathrm{kg} / \mathrm{dm}^{3}$.
8. Seismic velocities will be expressed in km / s.
9. The interval transit time unit is used in sonic logging work.
10. See discussion of "Energy, Torque, and Bending Moment,' Part 1.
11. The permeability conversions shown in Table 2.2 are for the traditional definitions of darcy and millidarcy.

In SI units, the square micrometer is the preferred unit of permeability in fluid flow through a porous medium, having the dimensions of viscosity times volume flow rate per unit area divided by pressure gradient, which simplifies to dimensions of length squared. (The fundamental SI unit is the square meter, defined by leaving out the factor of 10^{-12} in the equation below).

A permeability of $1 \mu \mathrm{~m}^{2}$ will permit a flow of $1 \mathrm{~m}^{3} / \mathrm{s}$ of fluid of $1 \mathrm{~Pa} \cdot \mathrm{~s}$ viscosity through an area of $1 \mathrm{~m}^{2}$ under a pressure gradient of $10^{12} \mathrm{~Pa} / \mathrm{m}$ (neglecting gravity effects):

$$
\begin{aligned}
1 \mu \mathrm{~m}^{2} & =10^{-12} \mathrm{~Pa} \cdot \mathrm{~s}\left[\mathrm{~m}^{3} /\left(\mathrm{s} \cdot \mathrm{~m}^{2}\right)\right](\mathrm{m} / \mathrm{Pa}) \\
& =10^{-12} \mathrm{~Pa} \cdot \mathrm{~s}(\mathrm{~m} / \mathrm{s})(\mathrm{m} / \mathrm{Pa}) \\
& =10^{-12} \mathrm{~m}^{2}
\end{aligned}
$$

The range of values in petroleum work is best served by units of $10^{-3} \mu \mathrm{~m}^{2}$. The traditional millidarcy (md) is an informal name for $10^{-3} \mu \mathrm{~m}^{2}$, which may be used where high accuracy is not implied.

For virtually all engineering purposes, the familiar darcy and millidarcy units may be taken equal to $1 \mu \mathrm{~m}^{2}$ and $10^{-3} \mu \mathrm{~m}^{2}$, respectively.
12. The ohm-meter is used in borehole geophysical devices.
13. As noted in Section 1, the mole is an amount of substance expressible in elementary entities as atoms, molecules, ions, electrons, and other particles or specified groups of such particles. Since the expression kilogram mole is inconsistent with other SI practices, we have used the abbreviation '"kmol'' to designate an amount of substance which contains as many kilograms (groups of molecules) as there are atoms in 0.012 kg of carbon 12 multiplied by the relative molecular mass of the substance involved. In effect, the ' k '" prefix is merely a convenient way to identify the type of entity and facilitate conversion from the traditional pound mole without violating SI conventions.

Notes for Table 2.3

1. The standard cubic foot (scf) and barrel (bbl) referred to are measured at $60^{\circ} \mathrm{F}$ and 14.696 psia ; the cubic meter is measured at $15^{\circ} \mathrm{C}$ and 100 kPa (1 bar).
2. The kPa is the preferred SPE unit for pressure. But many are using the bar as a pressure measurement. The bar should be considered as a nonapproved name (or equivalent) for 100 kPa .
3. See discussion of 'Torque, and Bending Moment,' Part 1.

TABLE 2.2-TABLES OF RECOMMENDED SI UNITS

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor* Multiply Customary Unit by Factor to Get Metric Unit		
		SPE Preferred	Other Allowable				
SPACE,** TIME							
Length	m		naut mile	km		1.852*	$E+00$
		mile	km		1.609344^{*}	$E+00$	
		chain	m		2.011 68*	$E+01$	
		link	m		2.011 68*	E-01	
		fathom	m		1.8288^{*}	E+00	
		m	m		1.0*	$E+00$	
		yd	m		9.144*	E-01	
		ft	m	cm	$\begin{aligned} & 3.048^{*} \\ & 3.048^{*} \end{aligned}$	$\begin{aligned} & E-01 \\ & E+01 \end{aligned}$	
		in.	mm	cm	$\begin{aligned} & 2.54^{*} \\ & 2.54^{*} \end{aligned}$	$\begin{aligned} & E+01 \\ & E+00 \end{aligned}$	
		cm	mm	cm	$\begin{aligned} & 1.0^{*} \\ & 1.0^{*} \end{aligned}$	$\begin{aligned} & E+01 \\ & E+00 \end{aligned}$	
		mm	mm		1.0*	$E+00$	
		mil	$\mu \mathrm{m}$		2.54*	E+01	
		micron (μ)	$\mu \mathrm{m}$		1.0*	E+00	
Length/length	m / m	$\mathrm{ft} / \mathrm{mi}$	m / km		1.893939	E-01	
Length/volume	$\mathrm{m} / \mathrm{m}^{3}$	ft/U.S. gal	$\mathrm{m} / \mathrm{m}^{3}$		8.051964	E+01	
		$\mathrm{ft} / \mathrm{ft}^{3}$	$\mathrm{m} / \mathrm{m}^{3}$		1.076391	$E+01$	
		$\mathrm{ft} / \mathrm{bbl}$	$\mathrm{m} / \mathrm{m}^{3}$		1.917134	E+00	
Length/temperature	m / K	see "Temperature, Pressure, Vacuum"					
Area	m^{2}	sq mile	km^{2}		2.589988	$E+00$	
		section	km^{2}	ha	$\begin{array}{r} 2.589988 \\ 2.589988 \\ \hline \end{array}$	$\begin{aligned} & E+00 \\ & E+02 \end{aligned}$	
		acre	m^{2}	ha	$\begin{aligned} & 4.046856 \\ & 4.046856 \end{aligned}$	$\begin{aligned} & E+03 \\ & E-01 \end{aligned}$	
		ha	m^{2}		1.0*	E+04	
		sq yd	m^{2}		8.361274	E-01	
		sq ft	m^{2}	cm^{2}	$\begin{aligned} & 9.290304^{*} \\ & 9.290304^{*} \end{aligned}$	$\begin{aligned} & E-02 \\ & E+02 \end{aligned}$	
		sq in.	mm^{2}	cm^{2}	$\begin{aligned} & \hline 6.4516^{*} \\ & 6.4516^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & E+02 \\ & E+00 \end{aligned}$	
		cm^{2}	mm ${ }^{2}$	cm^{2}	$\begin{aligned} & \hline 1.0^{*} \\ & 1.0^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & E+02 \\ & E+00 \end{aligned}$	
		mm^{2}	mm^{2}		1.0*	E+00	
Area/volume	$\mathrm{m}^{2} / \mathrm{m}^{3}$	$\mathrm{ft}^{2} / \mathrm{in} .^{3}$	$\mathrm{m}^{2} / \mathrm{cm}^{3}$		5.699291	E-03	
Area/mass	$\mathrm{m}^{2} / \mathrm{kg}$	$\mathrm{cm}^{2} / \mathrm{g}$	$\mathrm{m}^{2} / \mathrm{kg}$ $\mathrm{m}^{2} / \mathrm{g}$		$\begin{aligned} & 1.0^{*} \\ & 1.0^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & E-01 \\ & E-04 \end{aligned}$	
Volume, capacity	m^{3}	cubem	km^{3}		4.168182	$E+00^{(1) t}$	
		acre-ft	m^{3}	ha.m	$\begin{aligned} & 1.233489 \\ & 1.233489 \\ & \hline \end{aligned}$	$\begin{aligned} & E+03 \\ & E-01 \\ & \hline \end{aligned}$	
		m^{3}	m^{3}		1.0*	$E+00$	
		cu yd	m^{3}		7.645549	E-01	
		bbl (42 U.S. gal)	m^{3}		1.589873	E-01	
		cu ft	$\begin{aligned} & \mathrm{m}^{3} \\ & \mathrm{dm}^{3} \end{aligned}$	L	2.831685 2.831685	$\begin{aligned} & E-02 \\ & E+01 \\ & \hline \end{aligned}$	
		U.K. gal	$\begin{aligned} & \mathrm{m}^{3} \\ & \mathrm{dm}^{3} \end{aligned}$	L	$\begin{aligned} & 4.546092 \\ & 4.546092 \end{aligned}$	$\begin{aligned} & E-03 \\ & E+00 \end{aligned}$	
		U.S. gal	$\begin{aligned} & \mathrm{m}^{3} \\ & \mathrm{dm}^{3} \end{aligned}$	L	$\begin{aligned} & 3.785412 \\ & 3.785412 \\ & \hline \end{aligned}$	$\begin{aligned} & E-03 \\ & E+00 \\ & \hline \end{aligned}$	
		liter	dm^{3}	L	1.0*	$E+00$	
		U.K. qt	dm^{3}	L	1.136523	E+00	
		U.S. qt	dm^{3}	L	9.463529	E-01	
		U.S. pt	dm^{3}	L	4.731765	E-01	

-An asterisk indicates that the conversion factor is exact using the numbers shown; all subsequent numbers are zeros.
${ }^{\bullet}$ - Conversion factors for length, area, and volume (and related quantities) in Table 2.2 are based on the international foot. See Footnote 1 of Table 1.7, Part 1.

TABLE 2.2—TABLES OF RECOMMENDED SI UNITS (cont'd.)

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor* Multiply Customary Unit by Factor to Get Metric Unit		
		SPE Preferred	Other Allowable				
SPACE,** TIME							
Volume, capacity	. m^{3}		U.K. fl oz	cm^{3}		2.841308	$E+01$
		U.S. fl 02	cm^{3}		2.957353	$E+01$	
		cu in.	cm^{3}		1.638706	$E+01$	
		mL	cm^{3}		1.0*	E+00	
Volume/length (linear displacement)	$\mathrm{m}^{3} / \mathrm{m}$	bblin.	$\mathrm{m}^{3} / \mathrm{m}$		6.259342	E+00	
		bbl/ft	$\mathrm{m}^{3} / \mathrm{m}$		5.216119	E-01	
		$\mathrm{ft}^{3} / \mathrm{ft}$	$\mathrm{m}^{3} / \mathrm{m}$		9.290 304*	E-02	
		U.S. gal/ft	$\begin{aligned} & m^{3} / m \\ & \mathrm{dm}^{3} / \mathrm{m} \end{aligned}$	L/m	$\begin{array}{r} 1.241933 \\ 1.241933 \\ \hline \end{array}$	$\begin{aligned} & E-02 \\ & E+01 \end{aligned}$	
Volume/mass	$\mathrm{m}^{3} / \mathrm{kg}$	ensity, Specific Volum	centration, Dos				
Plane angle	rad	rad	rad		1.0*	$E+00$	
		deg (${ }^{\circ}$)	rad	。	$\begin{aligned} & 1.745329 \\ & 1.0^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E}-02^{(2)} \\ & \mathrm{E}+00 \end{aligned}$	
		min (${ }^{\prime}$)	rad	,	$\begin{aligned} & 2.908882 \\ & 1.0^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E}-04^{(2)} \\ & \mathrm{E}+00 \\ & \hline \end{aligned}$	
		sec (")	rad	"	$\begin{aligned} & \hline 4.848137 \\ & 1.0^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & E-06^{(2)} \\ & E+00 \end{aligned}$	
Solid angle	sr	sr	sr		1.0*	$\mathrm{E}+00$	
Time	s	million years (MY)	Ma		1.0*	$\mathrm{E}+00^{(3)}$	
		yr	a		1.0*	$\mathrm{E}+00$	
		wk	d		7.0*	$\mathrm{E}+00$	
		d	d		1.0*	E+00	
		hr	h	min	$\begin{aligned} & 1.0^{*} \\ & 6.0^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline E+00 \\ & E+01 \\ & \hline \end{aligned}$	
		min	s	$\begin{aligned} & \mathrm{h} \\ & \mathrm{~min} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6.0^{*} \\ & 1.666667 \\ & 1.0^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{E}+01 \\ & \mathrm{E}-02 \\ & \mathrm{E}+00 \\ & \hline \end{aligned}$	
		s	s		1.0*	E+00	
		millimicrosecond	ns		1.0*	$\mathrm{E}+00$	
MASS, AMOUNT OF SUBSTANCE							
Mass	kg	U.K. ton (long ton)	Mg	t	1.016047	E+00	
		U.S. ton (short ton)	Mg	t	9.071847	E-01	
		U.K. ton	kg		5.080235	$\mathrm{E}+01$	
		U.S. cwt	kg		4.535924	E+01	
		kg	kg		1.0*	E+00	
		1 lm	kg		4.535924	E-01	
		Oz (troy)	g		3.110348	E+01	
		Oz (av)	g		2.834952	E+01	
		g	g		1.0*	E+00	
		grain	mg		6.479891	E+01	
		mg	mg		1.0*	$\mathrm{E}+00$	
		g	g		1.0*	$\mathrm{E}+00$	
Mass/length	kg/m	see "Mechanics"					
Mass/area	$\mathrm{kg} / \mathrm{m}^{2}$	see "Mechanics"					
Mass/volume	$\mathrm{kg} / \mathrm{m}^{3}$	Density, Specific Volum	centration, Dos				
Mass/mass	kg/kg	Density, Specific Volum	centration, Dos				
Amount of substance	mol	1 bm mol	kmol		4.535924	E-01	
		g mol	kmol		1.0*	E-03	
		std $\mathrm{m}^{3}\left(0^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right)$	kmol		4.46158	$\mathrm{E}-02{ }^{(4,13)}$	
		std $\mathrm{m}^{3}\left(15^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right)$	kmol		4.22932	$\mathrm{E}-02{ }^{(4.13)}$	
		std ft ${ }^{3}\left(60^{\circ} \mathrm{F}, 1 \mathrm{~atm}\right)$	kmol		1.1953	$\mathrm{E}-03^{(4.13)}$	

TABLE 2.2-TABLES OF RECOMMENDED SI UNITS (cont'd.)
Conversion Factor*
Multiply Customary
Unit by Factor to Get Metric Unit

CALORIFIC VALUE, HEAT, ENTROPY, HEAT CAPACITY						
Calorific value (mass basis)	J/kg	Btu/bm	MJ/kg kJ/kg	$\begin{aligned} & \mathrm{J} / \mathrm{g} \\ & (\mathrm{~kW} \cdot \mathrm{~h}) / \mathrm{kg} \end{aligned}$	$\begin{aligned} & \hline 2.326 \\ & 2.326 \\ & 6.461112 \\ & \hline \end{aligned}$	$\begin{aligned} & E-03 \\ & E+00 \\ & E-04 \end{aligned}$
		cal/g	kJ/kg	J / g	4.184*	E+00
		cal/lbm	J/kg		9.224141	$\mathrm{E}+00$
Calorific value (mole basis)	$\mathrm{J} / \mathrm{mol}$	$\mathrm{kcal} / \mathrm{g} \mathrm{mol}$	kJ/kmol		4.184*	$\mathrm{C}+03^{13}$
		Btu/lbm mol	$\mathrm{MJ} / \mathrm{kmol}$ $\mathrm{kJ} / \mathrm{kmol}$		$\begin{aligned} & \hline 2.326 \\ & 2.326 \end{aligned}$	$\begin{aligned} & E-03^{13} \\ & E+00^{13} \end{aligned}$
Calorific value (volume basis solids and liquids)	$\mathrm{J} / \mathrm{m}^{3}$	therm/U.K. gal	$\mathrm{MJ} / \mathrm{m}^{3}$ $\mathrm{kJ} / \mathrm{m}^{3}$	$\mathrm{kJ} / \mathrm{dm}^{3}$ (kW•h)/dm ${ }^{3}$	$\begin{aligned} & \hline 2.32080 \\ & 2.32080 \\ & 6.446660 \\ & \hline \end{aligned}$	$\begin{aligned} & E+04 \\ & E+07 \\ & E+00 \\ & \hline \end{aligned}$
		Btu/U.S. gal	$\mathrm{MJ} / \mathrm{m}^{3}$ $\mathrm{kJ} / \mathrm{m}^{3}$	$\mathrm{kJ} / \mathrm{dm}^{3}$ $(\mathrm{kW} \cdot \mathrm{h}) / \mathrm{m}^{3}$	$\begin{aligned} & 2.787163 \\ & 2.787163 \\ & 7.742119 \\ & \hline \end{aligned}$	$\begin{aligned} & E-01 \\ & E+02 \\ & E-02 \end{aligned}$
		Btu/U.K. gal	$\mathrm{MJ} / \mathrm{m}^{3}$ $\mathrm{kJ} / \mathrm{m}^{3}$	$\mathrm{kJ} / \mathrm{dm}^{3}$ $(\mathrm{kW} \cdot \mathrm{h}) / \mathrm{m}^{3}$	$\begin{aligned} & \hline 2.3208 \\ & 2.3208 \\ & 6.446660 \\ & \hline \end{aligned}$	$\begin{aligned} & E-01 \\ & E+02 \\ & E-02 \end{aligned}$
		Btu/ft ${ }^{\text {a }}$	$\begin{aligned} & \hline \mathrm{MJ} / \mathrm{m}^{3} \\ & \mathrm{~kJ} / \mathrm{m}^{3} \end{aligned}$	$\mathrm{kJ} / \mathrm{dm}^{3}$ $(k W \cdot h) / m^{3}$	$\begin{aligned} & 3.725895 \\ & 3.725895 \\ & 1.034971 \\ & \hline \end{aligned}$	$\begin{aligned} & E-02 \\ & E+01 \\ & E-02 \end{aligned}$
		$\mathrm{kcal} / \mathrm{m}^{3}$	$\begin{aligned} & \hline \mathrm{MJ} / \mathrm{m}^{3} \\ & \mathrm{~kJ} / \mathrm{m}^{3} \end{aligned}$	$\mathrm{kJ} / \mathrm{dm}^{3}$	$\begin{aligned} & \hline 4.184^{*} \\ & 4.184^{*} \end{aligned}$	$\begin{aligned} & \hline E-03 \\ & E+00 \end{aligned}$
		cal/mL	$\mathrm{MJ} / \mathrm{m}^{3}$		4.184*	$\mathrm{E}+00$
		ft -lbf/U.S. gal	$\mathrm{kJ} / \mathrm{m}^{3}$		3.581692	E-01
Calorific value (volume basis gases)	$\mathrm{J} / \mathrm{m}^{3}$	$\mathrm{cal} / \mathrm{mL}$	$\mathrm{kJ} / \mathrm{m}^{3}$	$\mathrm{J} / \mathrm{dm}^{3}$	4.184*	E+03
		$\mathrm{kcal} / \mathrm{m}^{3}$	$\mathrm{kJ} / \mathrm{m}^{3}$	$\mathrm{J} / \mathrm{dm}^{3}$	4.184*	$E+00$
		Btu/tt ${ }^{3}$	$\mathrm{kJ} / \mathrm{m}^{3}$	$\begin{aligned} & \mathrm{J} / \mathrm{dm}^{3} \\ & (\mathrm{~kW} \cdot \mathrm{~h}) / \mathrm{m}^{3} \end{aligned}$	$\begin{aligned} & 3.725895 \\ & 1.034971 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E}+01 \\ & \mathrm{E}-02 \end{aligned}$
Specific entropy	$\mathrm{J} / \mathrm{kg} \cdot \mathrm{K}$	Btu/(lbm- ${ }^{\circ} \mathrm{R}$)	kJ/(kg-K)	$\mathrm{J}(\mathrm{g} \cdot \mathrm{K})$	4.1868^{*}	E+00
		$\mathrm{cal} /\left(\mathrm{g}-{ }^{\circ} \mathrm{K}\right)$	kJ/(kg-K)	$\mathrm{J}(\mathrm{g} \cdot \mathrm{K})$	4.184*	E+00
		$\mathrm{kcal} /\left(\mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)$	kJ/(kg-K)	$\mathrm{J}(\mathrm{g} \cdot \mathrm{K})$	4.184*	E+00
Specific heat capacity (mass basis)	$\mathrm{J} / \mathrm{kg} \cdot \mathrm{K}$	kW-hr/(kg- ${ }^{\circ} \mathrm{C}$)	kJ/(kg-K)	$J(\mathrm{~g} \cdot \mathrm{~K})$	3.6*	E+03
		Btu/(lbm- ${ }^{\text {F }}$)	kJ/(kg-K)	$J(\mathrm{~g} \cdot \mathrm{~K})$	$4.186{ }^{\text {* }}$	E+00
		$\mathrm{kcal} /\left(\mathrm{kg}-{ }^{\circ} \mathrm{C}\right)$	kJ/(kg-K)	$\mathrm{J}(\mathrm{g} \cdot \mathrm{K})$	4.184*	$E+00$
Molar heat capacity	$\mathrm{J} / \mathrm{mol} \cdot \mathrm{K}$	Btu/(lbm mol- ${ }^{\circ} \mathrm{F}$)	$\mathrm{kJ} /(\mathrm{kmol} \cdot \mathrm{K})$		4.1868^{*}	$\mathrm{E}+00^{13}$
		$\mathrm{cal} /\left(\mathrm{g} \mathrm{mol}-{ }^{\circ} \mathrm{C}\right.$)	kJ/(kmol K)		4.184*	$\mathrm{E}-00^{13}$

Temperature (absolute)	K	${ }^{\circ} \mathrm{R}$	K		5/9	
		${ }^{\circ} \mathrm{K}$	K		1.0*	$E+00$
Temperature (traditional)	K	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$		(${ }^{\text {F }}$ - 32) 11.	
		${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$		1.0*	$E+00$
Temperature (difference)	K	${ }^{\circ} \mathrm{F}$	K	${ }^{\circ} \mathrm{C}$	5/9	$\mathrm{E}+00$
		${ }^{\circ} \mathrm{C}$	K	${ }^{\circ} \mathrm{C}$	1.0*	$\mathrm{E}+00$
Temperature/length (geothermal gradient)	K/m	${ }^{\circ} \mathrm{F} / 100 \mathrm{ft}$	mK / m		1.822689	E+01
Length/temperature (geothermal step)	m/K	$\mathrm{ft} /{ }^{\circ} \mathrm{F}$	m / K		5.4864^{*}	E-01
Pressure	Pa	atm $\left(760 \mathrm{~mm} \mathrm{Hg}\right.$ at $0^{\circ} \mathrm{C}$ or 14.696 ($\mathrm{lbf} / \mathrm{in} .^{2}$)	$\begin{aligned} & \mathrm{MPa} \\ & \mathrm{kPa} \end{aligned}$	bar	$\begin{aligned} & 1.01325^{*} \\ & 1.01325^{*} \\ & 1.01325^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline E-01 \\ & E+02 \\ & E+00 \end{aligned}$
		bar	$\begin{aligned} & \mathrm{MPa} \\ & \mathrm{kPa} \end{aligned}$	bar	$\begin{aligned} & \hline 1.0^{*} \\ & 1.0^{*} \\ & 1.0^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E}-01 \\ & \mathrm{E}+02 \\ & \mathrm{E}+00 \end{aligned}$
		at (technical atm., kgf/cm ${ }^{2}$)	$\begin{aligned} & \mathrm{MPa} \\ & \mathrm{kPa} \end{aligned}$	bar	$\begin{aligned} & \hline 9.80665^{*} \\ & 9.80665^{*} \\ & 9.80665^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E}-02 \\ & \mathrm{E}+01 \\ & \mathrm{E}-01 \\ & \hline \end{aligned}$

TABLE 2.2—TABLES OF RECOMMENDED SI UNITS (cont'd.)

	Customary Unit	Metric Unit		Conversion Factor*Multiply Customary Unit by Factor to Get Metric Unit
Quantity and SI Unit		SPE Preferred	Other Allowable	

TEMPERATURE, PRESSURE, VACUUM						
Pressure	Pa	lbf/in. ${ }^{2}$ (psi)	$\begin{aligned} & \mathrm{MPa} \\ & \mathrm{kPa} \end{aligned}$	bar	$\begin{aligned} & 6.894757 \\ & 6.894757 \\ & 6.894757 \\ & \hline \end{aligned}$	$\begin{aligned} & E-03 \\ & E+00 \\ & E-02 \end{aligned}$
		in. $\mathrm{Hg}\left(32^{\circ} \mathrm{F}\right)$	kPa		3.38638	E+00
		in. $\mathrm{Hg}\left(60^{\circ} \mathrm{F}\right)$	kPa		3.37685	E+00
		in. $\mathrm{H}_{2} \mathrm{O}\left(39.2^{\circ} \mathrm{F}\right)$	kPa		2.49082	E-01
		in. $\mathrm{H}_{2} \mathrm{O}\left(60^{\circ} \mathrm{F}\right)$	kPa		2.4884	E-01
		$\mathrm{mm} \mathrm{Hg}\left(0^{\circ} \mathrm{C}\right)=$ torr	kPa		1.333224	E-01
		cm $\mathrm{H}_{2} \mathrm{O}\left(4^{\circ} \mathrm{C}\right)$	kPa		9.80638	E-02
		$\mathrm{lbf} / \mathrm{ft}^{2}$ (psf)	kPa		4.788026	E-02
		$\mu \mathrm{m} \mathrm{Hg} \mathrm{(} 0^{\circ} \mathrm{C}$)	Pa		1.333224	E-01
		$\mu \mathrm{bar}$	Pa		1.0*	E-01
		dyne/cm ${ }^{2}$	Pa		1.0*	E-01
Vacuum, draft	Pa	in. $\mathrm{Hg}\left(60^{\circ} \mathrm{F}\right)$	kPa		3.37685	$\mathrm{E}+00$
		in. $\mathrm{H}_{2} \mathrm{O}\left(39.2^{\circ} \mathrm{F}\right)$	kPa		2.49082	E-01
		in. $\mathrm{H}_{2} \mathrm{O}\left(60^{\circ} \mathrm{F}\right)$	kPa		2.4884	E-01
		$\mathrm{mm} \mathrm{Hg}\left(0^{\circ} \mathrm{C}\right)=$ torr	kPa		1.333224	E-01
		$\mathrm{CmH} \mathrm{H}_{2} \mathrm{O}\left(4^{\circ} \mathrm{C}\right)$	kPa		9.80638	E-02
Liquid head	m	ft	m		3.048*	E-01
		in.	mm	cm	$\begin{aligned} & \hline 2.54^{*} \\ & 2.54^{*} \end{aligned}$	$\begin{aligned} & E+01 \\ & E+00 \end{aligned}$
Pressure drop/length	Pa / m	psi/ft	kPa/m		2.262059	$E+01$
		psi/100 ft	$\mathrm{kPa} / \mathrm{m}$		2.262059	$\mathrm{E}-01^{(5)}$
DENSITY, SPECIFIC VOLUME, CONCENTRATION, DOSAGE						
Density (gases)	$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{lbm} / \mathrm{ft}^{3}$	$\begin{aligned} & \mathrm{kg} / \mathrm{m}^{3} \\ & \mathrm{~g} / \mathrm{m}^{3} \\ & \hline \end{aligned}$		$\begin{aligned} & 1.601846 \\ & 1.601846 \\ & \hline \end{aligned}$	$\begin{aligned} & E+01 \\ & E+04 \end{aligned}$
Density (liquids)	$\mathrm{kg} / \mathrm{m}^{3}$	lbm/U.S. gal	$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{g} / \mathrm{cm}^{3}$	$\begin{array}{r} 1.198264 \\ 1.198264 \\ \hline \end{array}$	$\begin{aligned} & E+02 \\ & E-01 \\ & \hline \end{aligned}$
		lbm/U.K. gal	$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{kg} / \mathrm{dm}^{3}$	$\begin{aligned} & \hline 9.977633 \\ & 9.977633 \\ & \hline \end{aligned}$	$\begin{aligned} & E+01 \\ & E-02 \end{aligned}$
		$1 \mathrm{bm} / \mathrm{ft}^{3}$	$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{g} / \mathrm{cm}^{3}$	$\begin{aligned} & \hline 1.601846 \\ & 1.601846 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E}+01 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
		$\mathrm{g} / \mathrm{cm}^{3}$	$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{kg} / \mathrm{dm}^{3}$	$\begin{aligned} & \hline 1.0^{*} \\ & 1.0^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & E+03 \\ & E+00 \end{aligned}$
		${ }^{\circ} \mathrm{API}$	$\mathrm{g} / \mathrm{cm}^{3}$		141.5/(131.	${ }^{\circ} \mathrm{API}$)
Density (solids)	$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{lbm} / \mathrm{ft}^{3}$	$\mathrm{kg} / \mathrm{m}^{3}$		1.601846	$E+01$
Specific volume (gases)	$\mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{ft}^{3} / \mathrm{lbm}$	$\begin{aligned} & \mathrm{m}^{3} / \mathrm{kg} \\ & \mathrm{~m}^{3} / \mathrm{g} \end{aligned}$		$\begin{aligned} & \hline 6.242796 \\ & 6.242796 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E}-02 \\ & \mathrm{E}-05 \end{aligned}$
Specific volume (liquids)	$\mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{ft}^{3} / \mathrm{lbm}$	$\mathrm{dm}^{3} / \mathrm{kg}$		6.242796	$E+01$
		U.K. gal/lbm	$\mathrm{dm}^{3} / \mathrm{kg}$	$\mathrm{cm}^{3} / \mathrm{g}$	1.002242	$E+01$
		U.S. gal/lbm	$\mathrm{dm}^{3} / \mathrm{kg}$	$\mathrm{cm}^{3} / \mathrm{g}$	8.345404	$E+00$
Specific volume (mole basis)	$\mathrm{m}^{3} / \mathrm{mol}$	L/g mol	$\mathrm{m}^{3} / \mathrm{kmol}$		1.0*	$\mathrm{E}+00^{13}$
		$\mathrm{ft}^{3} / \mathrm{lbm} \mathrm{mol}$	$\mathrm{m}^{3} / \mathrm{kmol}$		6.242796	$\mathrm{E}-02^{13}$
Specific volume (clay yield)	$\mathrm{m}^{3} / \mathrm{kg}$	bbl/U.S. ton	$\mathrm{m}^{3} / \mathrm{t}$		1.752535	E-01
		bbl/U.K. ton	$\mathrm{m}^{3} / \mathrm{t}$		1.564763	E-01
Yield (shale distillation)	$\mathrm{m}^{3} / \mathrm{kg}$	bbl/U.S. ton	$\mathrm{dm}^{3} / \mathrm{t}$	L/t	1.752535	E+02
		bbl/U.K. ton	$\mathrm{dm}^{3} / \mathrm{t}$	L/t	1.564763	E+02
		U.S. gal/U.S. ton	$\mathrm{dm}^{3} / \mathrm{t}$	L/t	4.172702	E+00
		U.S. gal/U.K. ton	$\mathrm{dm}^{3} / \mathrm{t}$	L/t	3.725627	$\mathrm{E}+00$
Concentration (mass/mass)	kg/kg	wt \%	$\begin{aligned} & \hline \mathrm{kg} / \mathrm{kg} \\ & \mathrm{~g} / \mathrm{kg} \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0^{*} \\ & 1.0^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & E-02 \\ & E+01 \end{aligned}$
		wt ppm	$\mathrm{mg} / \mathrm{kg}$		1.0*	E+00
Concentration (mass/volume)	$\mathrm{kg} / \mathrm{m}^{3}$	lbm/bbl	$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{g} / \mathrm{dm}^{3}$	2.853010	$\mathrm{E}+00$
		g/U.S. gal	$\mathrm{kg} / \mathrm{m}^{3}$		2.641720	E-01
		g/U.K. gal	$\mathrm{kg} / \mathrm{m}^{3}$	g/L	2.199692	E-01

TABLE 2.2-TABLES OF RECOMMENDED SI UNITS (cont'd.)

		Metric Unit		Multiply Customary Unit by Factor to Get Metric Unit
Quantity and SI Unit	Customary Unit	SPE Preferred	Other Allowable	

DENSITY, SPECIFIC VOLUME, CONCENTRATION, DOSAGE

Concentration (mass/volume)	$\mathrm{kg} / \mathrm{m}^{3}$	lbm/1000 U.S. gal	$\mathrm{g} / \mathrm{m}^{3}$	$\mathrm{mg} / \mathrm{dm}^{3}$	1.198264	$E+02$
		lbm/1000 U.K. gal	$\mathrm{g} / \mathrm{m}^{3}$	$\mathrm{mg} / \mathrm{dm}^{3}$	9.977633	$E+01$
		grains/U.S. gal	$\mathrm{g} / \mathrm{m}^{3}$	$\mathrm{mg} / \mathrm{dm}^{3}$	1.711806	$\mathrm{E}+01$
		grains/ft ${ }^{3}$	$\mathrm{mg} / \mathrm{m}^{3}$		2.288352	$E+03$
		$1 \mathrm{bm} / 1000 \mathrm{bbl}$	$\mathrm{g} / \mathrm{m}^{3}$	$\mathrm{mg} / \mathrm{dm}^{3}$	2.853010	$\mathrm{E}+00$
		mg/U.S. gal	$\mathrm{g} / \mathrm{m}^{3}$	$\mathrm{mg} / \mathrm{dm}^{3}$	2.641720	E-01
		grains/100 ft ${ }^{3}$	$\mathrm{mg} / \mathrm{m}^{3}$		2.288352	$E+01$
Concentration (volume/volume)	$\mathrm{m}^{3} / \mathrm{m}^{3}$	bbl/bbl	$\mathrm{m}^{3} / \mathrm{m}^{3}$		$1.0 *$	$\mathrm{E}+00$
		$\mathrm{ft}^{3} / \mathrm{ft}^{3}$	$\mathrm{m}^{3} / \mathrm{m}^{3}$		1.0*	$E+00$
		bbl/acre.ft	$\mathrm{m}^{3} / \mathrm{m}^{3}$	$\mathrm{m}^{3} / \mathrm{ha} \cdot \mathrm{m}$	$\begin{aligned} & 1.288923 \\ & 1.288923 \\ & \hline \end{aligned}$	$\begin{aligned} & E-04 \\ & E+00 \end{aligned}$
		vol \%	$\mathrm{m}^{3} / \mathrm{m}^{3}$		1.0*	E-02
		U.K. gal/ft ${ }^{3}$	$\mathrm{dm}^{3} / \mathrm{m}^{3}$	$\mathrm{L} / \mathrm{m}^{3}$	1.605437	E+02
		U.S. gal/ft ${ }^{\text {3 }}$	$\mathrm{dm}^{3} / \mathrm{m}^{3}$	$\mathrm{L} / \mathrm{m}^{3}$	1.336806	E+02
		mL/U.S. gal	$\mathrm{dm}^{3} / \mathrm{m}^{3}$	$\mathrm{L} / \mathrm{m}^{3}$	2.641720	E-01
		mL/U.K. gal	$\mathrm{dm}^{3} / \mathrm{m}^{3}$	$\mathrm{L} / \mathrm{m}^{3}$	2.199692	E-01
		vol ppm	$\begin{aligned} & \mathrm{cm}^{3} / \mathrm{m}^{3} \\ & \mathrm{dm}^{3} / \mathrm{m}^{3} \end{aligned}$	L / m^{3}	$\begin{aligned} & 1.0^{*} \\ & 1.0^{*} \end{aligned}$	$\begin{aligned} & \mathrm{E}+00 \\ & \mathrm{E}-03 \end{aligned}$
		U.K. gal/1000 bbl	$\mathrm{cm}^{3} / \mathrm{m}^{3}$		2.859406	E+01
		U.S. gal/1000 bbl	$\mathrm{cm}^{3} / \mathrm{m}^{3}$		2.380952	$\mathrm{E}+01$
		U.K. pt/1000 bbl	$\mathrm{cm}^{3} / \mathrm{m}^{3}$		3.574253	$\mathrm{E}+00$
Concentration (mole/volume)	$\mathrm{mol} / \mathrm{m}^{3}$	Ibm mol/U.S. gal	$\mathrm{kmol} / \mathrm{m}^{3}$		1.198264	E+02
		lbm mol/U.K. gal	$\mathrm{kmol} / \mathrm{m}^{3}$		9.977633	E+01
		$1 \mathrm{bm} \mathrm{mol} / \mathrm{ft}^{3}$	$\mathrm{kmol} / \mathrm{m}^{3}$		1.601846	E+01
		std $\mathrm{ft}^{3}\left(60^{\circ} \mathrm{F}\right.$, 1 atm)/bbl	$\mathrm{kmol} / \mathrm{m}^{3}$		7.51818	E-03
Concentration (volume/mole)	$\mathrm{m}^{3} / \mathrm{mol}$	$\begin{aligned} & \text { U.S. gal/1000 std ft }{ }^{3} \\ & \left(60^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F}\right) \\ & \hline \end{aligned}$	$\mathrm{dm}^{3} / \mathrm{kmol}$	L/kmol	3.16693	$E+00$
		bbl/million std ft^{3} ($60^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F}$)	dm³/kmol	L/kmol	1.33011	E-01

FACILITY THROUGHPUT, CAPACITY						
Throughput (mass basis)	kg/s	million lbm/yr	t/a	Mg/a	4.535924	$E+02$
		U.K. ton/yr	t/a	Mg/a	1.016047	$\mathrm{E}+00$
		U.S. ton/yr	ta	Mg/a	9.071847	E-01
		U.K. ton/D	t/d	Mg/d $\mathrm{th}, \mathrm{Mg} / \mathrm{h}$	$\begin{array}{r} 1.016047 \\ 4.233529 \\ \hline \end{array}$	$\begin{aligned} & E+00 \\ & E-02 \end{aligned}$
		U.S. ton/D	t/d	$\mathrm{th}, \mathrm{Mg} / \mathrm{h}$	$\begin{aligned} & 9.071847 \\ & 3.779936 \\ & \hline \end{aligned}$	$\begin{aligned} & E-01 \\ & E-02 \end{aligned}$
		U.K. ton/hr	t/h	Mg / h	1.016047	$E+00$
		U.S. ton/hr	t/h	Mg / h	9.071847	E-01
		$\mathrm{lbm} / \mathrm{hr}$	kg/h		4.535924	E-01
Throughput (volume basis)	$\mathrm{m}^{3} / \mathrm{s}$	bbl/	t/a $\mathrm{m}^{3} / \mathrm{h}$	$\mathrm{m}^{3} / \mathrm{d}$	$\begin{aligned} & 5.803036 \\ & 1.589873 \\ & 6.624471 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline E+01^{(7)} \\ & E-01 \\ & E-03 \\ & \hline \end{aligned}$
		$\mathrm{ft}^{3} \mathrm{D}$	$\mathrm{m}^{3} / \mathrm{h}$	$\mathrm{m}^{3 / \mathrm{d}}$	$\begin{array}{r} 1.179869 \\ 2.831685 \\ \hline \end{array}$	$\begin{aligned} & \hline E-03 \\ & E-02 \\ & \hline \end{aligned}$
		bbl/hr	$\mathrm{m}^{3} / \mathrm{h}$		1.589873	E-01
		$\mathrm{ft}^{3 / h}$	$\mathrm{m}^{3} / \mathrm{h}$		2.831685	E-02
		U.K. gal/hr	$\mathrm{m}^{3} / \mathrm{h}$	L/s	$\begin{aligned} & 4.546092 \\ & 1.262803 \end{aligned}$	$\begin{aligned} & \hline E-03 \\ & E-03 \end{aligned}$
		U.S. gal/hr	$\mathrm{m}^{3} / \mathrm{h}$	L/s	$\begin{array}{r} \hline 3.785412 \\ 1.051503 \\ \hline \end{array}$	$\begin{aligned} & \hline E-03 \\ & E-03 \\ & \hline \end{aligned}$
		U.K. gal/min	$\mathrm{m}^{3} / \mathrm{h}$	L/s	$\begin{aligned} & 2.727655 \\ & 7.576819 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{E}-01 \\ & \mathrm{E}-02 \\ & \hline \end{aligned}$
		U.S. gal/min	$\mathrm{m}^{3} / \mathrm{h}$	L/s	$\begin{array}{r} \hline 2.271247 \\ 6.309020 \\ \hline \end{array}$	$\begin{aligned} & E-01 \\ & E-02 \\ & \hline \end{aligned}$

TABLE 2.2-TABLES OF RECOMMENDED SI UNITS (cont'd.)

		Metric Unit		Multiply Customary Unit by Factor to Get Metric Unit
Quantity and SI Unit	Customary Unit	SPE Preferred	Other Allowable	

TABLE 2.2-TABLES OF RECOMMENDED SI UNITS (cont'd.)

Quantity and SI Unit		CustomaryUnit	Metric Unit		Conversion Factor* Multiply Customary Unit by Factor to Get Metric Unit		
		SPE Preferred	Other Allowable				
ENERGY, WORK, POWER							
Energy, work	J		quad therm	$\begin{aligned} & \mathrm{MJ} \\ & \mathrm{TJ} \\ & \mathrm{EJ} \\ & \\ & \mathrm{MJ} \\ & \mathrm{~kJ} \end{aligned}$	MW.h GW•h TW•h kW•h	1.055056 1.055056 1.055056 2.930711 2.930711 2.930711 1.055056 1.055056 2.930711	$\begin{aligned} & \mathrm{E}+12 \\ & \mathrm{E}+06 \\ & \mathrm{E}+00 \\ & \mathrm{E}+08 \\ & \mathrm{E}+05 \\ & \mathrm{E}+02 \\ & \mathrm{E}+02 \\ & \mathrm{E}+05 \\ & \mathrm{E}+01 \end{aligned}$
		U.S. tonf-mile	MJ		1.431744	$E+01$	
		hp-hr	$\begin{aligned} & \mathrm{MJ} \\ & \mathrm{~kJ} \end{aligned}$	kW•h	$\begin{aligned} & 2.684520 \\ & 2.684520 \\ & 7.456999 \end{aligned}$	$\begin{aligned} & E+00 \\ & E+03 \\ & E-01 \end{aligned}$	
		ch-hr or CV-hr	$\begin{aligned} & \mathrm{MJ} \\ & \mathrm{Kj} \end{aligned}$	kW•h	$\begin{aligned} & 2.647796 \\ & 2.647796 \\ & 7.35499 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline E+00 \\ & E+03 \\ & E-01 \\ & \hline \end{aligned}$	
		kW-hr	$\begin{aligned} & \hline \mathrm{MJ} \\ & \mathrm{~kJ} \end{aligned}$		$\begin{aligned} & 3.6^{*} \\ & 3.6^{*} \end{aligned}$	$\begin{aligned} & E+00 \\ & E+03 \end{aligned}$	
		Chu	kJ	kW-h	$\begin{aligned} & 1.899101 \\ & 5.275280 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline E+00 \\ & E-04 \end{aligned}$	
		Btu	kJ	kW-h	$\begin{aligned} & 1.055056 \\ & 2.930711 \\ & \hline \end{aligned}$	$\begin{aligned} & E+00 \\ & E-04 \end{aligned}$	
		kcal	kJ		4.184*	E+00	
		cal	kJ		4.184*	E-03	
		ft-lbf	kJ		1.355818	E-03	
		lbf-ft	kJ		1.355818	E-03	
		J	kJ		1.0*	E-03	
		$\mathrm{lbf}-\mathrm{ft}^{2} / \mathrm{s}^{2}$	kJ		4.214011	E-05	
		erg	J		$1.0 *$	E-07	
Impact energy	J	kgf-m	J		9.806 650*	E+00	
		lbf-ft	J		1.355818	E+00	
Work/length	J / m	U.S. tonf-mile/ft	MJ / m		4.697322	E+01	
Surface energy	$\mathrm{J} / \mathrm{m}^{2}$	$\mathrm{erg} / \mathrm{cm}^{2}$	$\mathrm{mJ} / \mathrm{m}^{2}$		$1.0 *$	E+00	
Specific impact energy	$\mathrm{J} / \mathrm{m}^{2}$	$\mathrm{kgf} \cdot \mathrm{m} / \mathrm{cm}^{2}$	$\mathrm{J} / \mathrm{cm}^{2}$		$9.806650 *$	E-00	
		lbfft/in. ${ }^{2}$	$\mathrm{J} / \mathrm{cm}^{2}$		2.101522	E-01	
Power	W	quad/yr erg/a	MJ/a TJ/a EJ/a TW GW		$\begin{aligned} & 1.055056 \\ & 1.555056 \\ & 1.055056 \\ & 3.170979 \\ & 3.1709979 \end{aligned}$	$\begin{aligned} & E+12 \\ & E+06 \\ & E+00 \\ & E-27 \\ & E-24 \end{aligned}$	
		million Btu/hr	MW		2.930711	E-01	
		ton of refrigeration	kW		3.516853	E+00	
		Btu/s	kW		1.055056	$E+00$	
		kW	kW		1.0*	E+00	
		hydraulic horsepower - hhp	kW		7.46043	E-01	
		hp (electric)	kW		7.46*	E-01	
		$\mathrm{hp} \mathrm{(550} \mathrm{ft-lbf/s)}$	kW		7.456999	E-01	
		ch or CV	kW		7.35499	E-01	
		Btu/min	kW		1.758427	E-02	
		ft tbt/s	kW		1.355818	E-03	
		kcal/hr	W		1.162222	$\mathrm{E}+00$	
		Btu/hr	W		2.930711	E-01	
		$\mathrm{ft} \cdot \mathrm{lb} / \mathrm{min}$	W		2.259697	E-02	
Power/area	W/m ${ }^{2}$	Btu/s.ft ${ }^{\text {a }}$	kW/m ${ }^{2}$		1.135653	E+01	
		$\mathrm{cal} / \mathrm{hr} \cdot \mathrm{cm}^{2}$	kW/m ${ }^{2}$		1.162222	E-02	
		Btu/hr.ft ${ }^{\text {2 }}$	$\mathrm{kW} / \mathrm{m}^{2}$		3.154591	E-03	

TABLE 2.2-TABLES OF RECOMMENDED SI UNITS (cont'd.)

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor* Multiply Customary Unit by Factor to Get Metric Unit		
		SPE Preferred	Other Allowable				
ENERGY, WORK, POWER							
Heat flow unit - hfu (geothermics)			$\mu \mathrm{cal} / \mathrm{s} \cdot \mathrm{cm}^{2}$	$\mathrm{mW} / \mathrm{m}^{2}$		4.184*	$E+01$
Heat release rate, mixing power	W/m ${ }^{3}$	$\mathrm{hp} / \mathrm{ft}^{3}$	$\mathrm{kW} / \mathrm{m}^{3}$		2.633414	$E+01$	
		$\mathrm{cal} /\left(\mathrm{hr} \cdot \mathrm{cm}^{3}\right)$	kW/m ${ }^{3}$		1.162222	$E+00$	
		$\overline{\mathrm{Btu} /\left(\mathbf{s} \cdot \mathrm{ft}^{3}\right)}$	$\mathrm{kW} / \mathrm{m}^{3}$		3.725895	E+01	
		Btu/(hroft ${ }^{3}$)	$\mathrm{kW} / \mathrm{m}^{3}$		1.034971	E-02	
Heat generation unit - hgu (radioactive rocks)		$\mathrm{cal} /\left(\mathrm{s}-\mathrm{cm}^{3}\right)$	$\mu \mathrm{W} / \mathrm{m}^{3}$		4.184*	$E+12$	
Cooling duty (machinery)	W/W	Btu/(bhp-hr)	W/kW		3.930148	E-01	
Specific fuel consumption (mass basis)	kg/J	lbm/(hp-hr)	mg/J	kg/MJ $\mathrm{kg} /(\mathrm{kW} \cdot \mathrm{h})$	$\begin{aligned} & 1.689659 \\ & 6.082774 \end{aligned}$	$\begin{aligned} & E-01 \\ & E-01 \end{aligned}$	
Specific fuel consumption (volume basis)	$\mathrm{m}^{3 / J}$	$\mathrm{m}^{3} /(\mathrm{kW}-\mathrm{hr})$	$\mathrm{dm}^{3} / \mathrm{MJ}$	$\begin{aligned} & \mathrm{mm}^{3} / \mathrm{J} \\ & \mathrm{dm}^{3} /(\mathrm{kW} \cdot \mathrm{~h}) \end{aligned}$	$\begin{aligned} & 2.777778 \\ & 1.0^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & E+02 \\ & E+03 \end{aligned}$	
		U.S. gal/(hp-hr)	$\mathrm{dm}^{3} / \mathrm{MJ}$	$\begin{aligned} & \mathrm{mm}^{3} / \mathrm{J} \\ & \mathrm{dm}^{3} /(\mathrm{kW} \cdot \mathrm{~h}) \end{aligned}$	$\begin{aligned} & 1.410089 \\ & 5.076321 \end{aligned}$	$\begin{aligned} & E+00 \\ & E+00 \end{aligned}$	
		U.K. pt/(hp-hr)	$\mathrm{dm}^{3} / \mathrm{MJ}$	$\begin{aligned} & \mathrm{mm} m^{1 / 3} \mathrm{~J} \\ & \mathrm{dm}^{3} /(\mathrm{kW} \cdot \mathrm{~h}) \end{aligned}$	$\begin{aligned} & 2.116809 \\ & 7.620512 \\ & \hline \end{aligned}$	$\begin{aligned} & E-01 \\ & E-01 \end{aligned}$	
Fuel consumption (automotive)	$\mathrm{m}^{3} / \mathrm{m}$	U.K. gal/mile	$\mathrm{dm}^{3} / 100 \mathrm{~km}$	L/100 km	2.824811	$E+02$	
		U.S. gal/mile	$\mathrm{dm}^{3} / 100 \mathrm{~km}$	L/100 km	2.352146	E+02	
		mile/U.S. gal	$\mathrm{km} / \mathrm{dm}^{3}$	km/L	4.251437	E-01	
		mile/U.K. gal	$\mathrm{km} / \mathrm{dm}^{3}$	km/L	3.540060	E-01	
MECHANICS							
Velocity (linear), speed	m / s	knot	km/h		1.852*	$E+00$	
		mile/hr	km/h		1.609344^{*}	E+00	
		m / s	m / s		1.0*	$E+00$	
		ft / s	m / s	cm/s m / ms	3.048* 3.048* 3.048*	$\begin{aligned} & E-01 \\ & E+01 \\ & E-04^{(8)} \\ & \hline \end{aligned}$	
		$\mathrm{ft} / \mathrm{min}$	m / s	cm/s	$\begin{aligned} & 5.08^{*} \\ & 5.08^{*} \end{aligned}$	$\begin{aligned} & E-03 \\ & E-01 \end{aligned}$	
		$\mathrm{ft} / \mathrm{hr}$	mm / s	cm/s	$\begin{aligned} & 8.466667 \\ & 8.466667 \\ & \hline \end{aligned}$	$\begin{aligned} & E-02 \\ & E-03 \end{aligned}$	
		$f t D$	mm / s	m / d	$\begin{aligned} & 3.527778 \\ & 3.048^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & E-03 \\ & E-01 \\ & \hline \end{aligned}$	
		in./s	mm / s	cm/s	$\begin{aligned} & 2.54^{*} \\ & 2.54^{*} \end{aligned}$	$\begin{aligned} & E+01 \\ & E+00 \end{aligned}$	
		in./min	mm / s	cm/s	$\begin{array}{r} 4.233333 \\ 4.233333 \\ \hline \end{array}$	$\begin{aligned} & E-01 \\ & E-02 \end{aligned}$	
Velocity (angular)	$\mathrm{rad} / \mathrm{s}$	rev/min rev/s degree/min	rad/s rad/s rad/s		1.047198 6.283185 2.908882	$\begin{aligned} & E-01 \\ & E+00 \\ & E-04 \\ & \hline \end{aligned}$	
Interval transit time	s / m	s/ft	s / m	$\mu \mathrm{s} / \mathrm{m}$	3.280840	$\mathrm{E}+00^{(9)}$	
Corrosion rate	m / s	in./yr (ipy) $\mathrm{mil} / \mathrm{yr}$	mm / a mm/a		$\begin{aligned} & 2.54^{*} \\ & 2.54^{*} \end{aligned}$	$\begin{aligned} & E+01 \\ & E-02 \end{aligned}$	
Rotational frequency	rev/s	rev/s	rev/s		1.0*	$E+00$	
		rev/min	rev/s		1.666667	E-02	
		rev/min	$\mathrm{rad} / \mathrm{s}$		1.047198	E-01	
Acceleration (linear)	$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{ft} / \mathrm{s}^{2}$	$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{cm} / \mathrm{s}^{2}$	$\begin{aligned} & 3.048^{*} \\ & 3.048^{*} \end{aligned}$	$\begin{aligned} & E-01 \\ & E+01 \end{aligned}$	
		$\mathrm{gal}\left(\mathrm{cm} / \mathrm{s}^{2}\right)$	$\mathrm{m} / \mathrm{s}^{2}$		1.0*	E-02	
Acceleration (rotational)	$\mathrm{rad} / \mathrm{s}^{2}$	$\mathrm{rad} / \mathrm{s}^{2}$	$\mathrm{rad} / \mathrm{s}^{2}$		1.0*	E+00	
		rpm/s	$\mathrm{rad} / \mathrm{s}^{2}$		1.047198	E-01	
Momentum	$\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$	$\mathrm{lbm} \cdot \mathrm{ft} / \mathrm{s}$	$\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$		1.382550	E-01	

TABLE 2.2-TABLES OF RECOMMENDED SI UNITS (cont'd.)

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor*Multiply Customary Unit by Factor to Get Metric Unit		
		$\begin{gathered} \text { SPE } \\ \text { Preferred } \end{gathered}$	Other Allowable				
MECHANICS							
Force	N		U.K. tonf	kN		9.964016	E+00
		U.S. tonf	kN		8.896443	$E+00$	
		kgf (kp)	N		$9.806650 *$	$E+00$	
		Ibf	N		4.448222	$E+00$	
		N	N		1.0*	E+00	
		pdl	mN		1.382550	E+02	
		dyne	mN		1.0*	E-02	
Bending moment, torque	$N \cdot m$	U.S. tonf-ft	$\mathrm{kN} \cdot \mathrm{m}$		2.711636	$\mathrm{E}+00^{(10)}$	
		kgf-m	$\mathrm{N} \cdot \mathrm{m}$		9.806 650*	$\mathrm{E}+00^{(10)}$	
		$\mathrm{lbf}-\mathrm{ft}$	$\mathrm{N} \cdot \mathrm{m}$		1.355818	$\mathrm{E}+00^{(10)}$	
		Ibf-in.	$\mathrm{N} \cdot \mathrm{m}$		1.129848	E-01 ${ }^{(10)}$	
		pdl-ft	$\mathrm{N} \cdot \mathrm{m}$		4.214011	$\mathrm{E}-02^{(10)}$	
Bending moment/ length	$\mathrm{N} \cdot \mathrm{m} / \mathrm{m}$	((bf-ft)/in.	($\mathrm{N} \cdot \mathrm{m}$)/m		5.337866	$\mathrm{E}+01^{(10)}$	
		(kgf-m)/m	($\mathrm{N} \cdot \mathrm{m}$)/m		$9.806650 *$	$\mathrm{E}+00^{(10)}$	
		(Ibf-in.)/in.	($\mathrm{N} \cdot \mathrm{m}$)/m		4.448222	$\mathrm{E}+00^{(10)}$	
Elastic moduli (Young's, Shear bulk)	Pa	lbf/in. ${ }^{2}$	GPa		6.894757	E-06	
Moment of inertia	$\mathrm{kg} \cdot \mathrm{m}^{2}$	lbm-ft ${ }^{\text {2 }}$	$\mathrm{kg} \cdot \mathrm{m}^{2}$		4.214011	E-02	
Moment of section	m^{4}	in. ${ }^{4}$	cm^{4}		4.162314	E+01	
Section modulus	m^{3}	cu in. cu ft	$\begin{aligned} & \mathrm{cm}^{3} \\ & \mathrm{~cm}^{3} \end{aligned}$	$\begin{gathered} \mathrm{mm}^{3} \\ \mathrm{~m}^{3} \end{gathered}$	1.638706 1.638706 2.831685 2.831685	$\begin{aligned} & \hline E+01 \\ & E+04 \\ & E+04 \\ & E-02 \\ & \hline \end{aligned}$	
Stress	Pa	U.S. tonf/in. ${ }^{2}$	MPa	$\mathrm{N} / \mathrm{mm}^{2}$	1.378951	$E+01$	
		$\mathrm{kg} / \mathrm{mm}^{2}$	MPa	$\mathrm{N} / \mathrm{mm}^{2}$	$9.806650 *$	E+00	
		U.S. tonf/ft ${ }^{\text {2 }}$	MPa	$\mathrm{N} / \mathrm{mm}^{2}$	9.576052	E-02	
		lbf/in. ${ }^{2}$ (psi)	MPa	$\mathrm{N} / \mathrm{mm}^{2}$	6.894757	E-03	
		$\mathrm{lbf} / \mathrm{ft}^{2}$ (psf)	kPa		4.788026	E-02	
		dyne/cm ${ }^{2}$	Pa		1.0*	E-01	
Yield point, gel strength (drilling fluid)		$\mathrm{lbf} / 100 \mathrm{ft}^{2}$	Pa		4.788026	E-01	
Mass/length	kg/m	Ibm/ft	kg/m		1.488164	$E+00$	
Mass/area structural loading, bearing capacity (mass basis)	$\mathrm{kg} / \mathrm{m}^{2}$	U.S. ton/ft ${ }^{2}$	$\mathrm{Mg} / \mathrm{m}^{2}$		9.764855	$E+00$	
		$\mathrm{lbm} / \mathrm{ft}^{2}$	$\mathrm{kg} / \mathrm{m}^{2}$		4.882428	E+00	
Coefficient of thermal expansion	$\mathrm{m} /(\mathrm{m} \cdot \mathrm{K})$	in./(in. ${ }^{\circ} \mathrm{F}$)	$\mathrm{mm} /(\mathrm{mm} \cdot \mathrm{K})$		5.555556	E-01	
TRANSPORT PROPERTIES							
Diffusivity	$\mathrm{m}^{2} / \mathrm{s}$	$\mathrm{ft}^{2} / \mathrm{s}$	$\mathrm{mm}^{2} / \mathrm{s}$		9.290304^{*}	E+04	
		$\mathrm{cm}^{2} / \mathrm{s}$	$\mathrm{mm}^{2} / \mathrm{s}$		1.0*	$\mathrm{E}+02$.	
		$\mathrm{ft}^{2} / \mathrm{hr}$	$\mathrm{mm}^{2} / \mathrm{s}$		$2.58064 *$	E+01	
Thermal resistance	$\left(\mathrm{k} \cdot \mathrm{m}^{2}\right) / \mathrm{W}$	$\left({ }^{\circ} \mathrm{C}-\mathrm{m}^{2} \cdot \mathrm{hr}\right) / \mathrm{kcal}$	$\left(\mathrm{K} \cdot \mathrm{m}^{2}\right) / \mathrm{kW}$		8.604208	E+02	
		($\left.{ }^{\circ} \mathrm{F}-\mathrm{ft}^{2} \mathrm{hr}\right) / \mathrm{Btu}$	$\left(\mathrm{K} \cdot \mathrm{m}^{2}\right) / \mathrm{kW}$		1.761102	E+02	
Heat flux	$\mathrm{W} / \mathrm{m}^{2}$	$\mathrm{Btu} /\left(\mathrm{hr}-\mathrm{ft}^{2}\right)$	kW/m ${ }^{2}$		3.154591	E-03	
Thermal conductivity	$\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$	(cal/s- $\mathrm{cm}^{2}-{ }^{\circ} \mathrm{C}$)/cm	W/(m.K)		4.184*	E+02	
		$\mathrm{Btu} /\left(\mathrm{hr}-\mathrm{ft}^{2}-\mathrm{F} / \mathrm{ft}\right)$	W/(m-K)	$\mathrm{kJ} \cdot \mathrm{m} /\left(\mathrm{h} \cdot \mathrm{m}^{2} \cdot \mathrm{~K}\right)$	$\begin{aligned} & 1.730735 \\ & 6.230646 \\ & \hline \end{aligned}$	$\begin{aligned} & E+00 \\ & E+00 \end{aligned}$	
		$\mathrm{kcal} /\left(\mathrm{hr}-\mathrm{m}^{2}-{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$	W/(m-K)		1.162222	$\mathrm{E}+00$	
		Btu/(hr-ft ${ }^{2} .{ }^{\circ} \mathrm{F} / \mathrm{in}$.)	W/(m.K)		1.442279	E-01	
		$\mathrm{cal} /\left(\mathrm{hr}-\mathrm{cm}^{2}-{ }^{\circ} \mathrm{C} / \mathrm{cm}\right)$	W/(m•K)		1.162222	E-01	

TABLE 2.2—TABLES OF RECOMMENDED SI UNITS (cont'd.)

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor* Multiply Customary Unit by Factor to Get Metric Unit		
		SPE Preferred	Other Allowable				
TRANSPORT PROPERTIES							
Heat transfer coefficient	$\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$		$\mathrm{cal} /\left(\mathrm{s}-\mathrm{cm}^{2}{ }^{\circ} \mathrm{C} \mathrm{C}\right)$	$\mathrm{kW} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$		4.184*	E+01
		Btu/(s- $\left.\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}\right)$	$\mathrm{kW} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$		2.044175	E+01	
		$\mathrm{cal} /\left(\mathrm{hr}-\mathrm{cm}^{2}-{ }^{\circ} \mathrm{C}\right)$	$\mathrm{kW} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$		1.162222	E-02	
		$\mathrm{Btu} /\left(\mathrm{hr}-\mathrm{ft}^{2}{ }^{\circ} \mathrm{F}\right.$)	$\mathrm{kW} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$	$\mathrm{kJ} /\left(\mathrm{h} \cdot \mathrm{m}^{2} \cdot \mathrm{~K}\right)$	$\begin{aligned} & 5.678263 \\ & 2.044175 \\ & \hline \end{aligned}$	$\begin{aligned} & E-03 \\ & E+01 \end{aligned}$	
		Btu/(hr-ft ${ }^{\text {- }}$ - R)	$\mathrm{kW} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$		5.678263	E-03	
		$\mathrm{kcal} /\left(\mathrm{hr}-\mathrm{m}^{2}-{ }^{\circ} \mathrm{C}\right)$	$\mathrm{kW} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$		1.162222	E-03	
Volumetric heat transfer coefficient	$\mathrm{W} /\left(\mathrm{m}^{3} \cdot \mathrm{~K}\right)$	$\mathrm{Btu} /\left(\mathrm{s}-\mathrm{ft}^{3}-{ }^{\circ} \mathrm{F}\right)$	$\mathrm{kW} /\left(\mathrm{m}^{3} \cdot \mathrm{~K}\right)$		6.706611	E+01	
		$\mathrm{Btu} /\left(\mathrm{hr}-\mathrm{ft}^{3}-{ }^{\circ} \mathrm{F}\right)$	$\mathrm{kW} /\left(\mathrm{m}^{3} \cdot \mathrm{~K}\right)$		1.862947	E-02	
Surface tension	N/m	dyne/cm	mN / m		1.0*	E+00	
Viscosity (dynamic)	$\mathrm{Pa} \cdot \mathrm{s}$	((bf-s)/in. ${ }^{2}$	Pa .s	$(\mathrm{N} \cdot \mathrm{s}) / \mathrm{m}^{2}$	6.894757	E+03	
		($\mathrm{lbf}-\mathrm{s} / / \mathrm{ft}^{2}$	Pa.s	$(\mathrm{N} \cdot \mathrm{s}) / \mathrm{m}^{2}$	4.788026	E+01	
		(kgf-s)/m ${ }^{2}$	Pa.s	$(\mathrm{N} \cdot \mathrm{s}) / \mathrm{m}^{2}$	$9.806650 *$	E+00	
		$\mathrm{lbm} /(\mathrm{ft}-\mathrm{s})$	Pa.s	$(\mathrm{N} \cdot \mathrm{s}) / \mathrm{m}^{2}$	1.488164	$E+00$	
		(dyne-s)/cm ${ }^{2}$	Pa .s	$(\mathrm{N} \cdot \mathrm{s}) / \mathrm{m}^{2}$	1.0*	E-01	
		cp	Pa.s	$(\mathrm{N} \cdot \mathrm{s}) / \mathrm{m}^{2}$	$1.0{ }^{*}$	E-03	
		$\mathrm{lbm} /(\mathrm{ft} \cdot \mathrm{hr})$	Pa.s	$(\mathrm{N} \cdot \mathrm{s}) / \mathrm{m}^{2}$	4.133789	E-04	
Viscosity (kinematic)	$\mathrm{m}^{2} / \mathrm{s}$	$\mathrm{ft}^{2} / \mathrm{s}$	$\mathrm{mm}^{2} / \mathrm{s}$		$9.290304 *$	E+04	
		in. ${ }^{2}$ /s	$\mathrm{mm}^{2} / \mathrm{s}$		6.4516^{*}	E+02	
		$\mathrm{m}^{2} / \mathrm{hr}$	$\mathrm{mm}^{2} / \mathrm{s}$		2.777778	E+02	
		$\mathrm{cm}^{2} / \mathrm{s}$	$\mathrm{mm}^{2} / \mathrm{s}$		1.0 *	$\mathrm{E}+02$	
		$\mathrm{ft}^{2} / \mathrm{hr}$	$\mathrm{mm}^{2} / \mathrm{s}$		2.58064^{*}	E+01	
		cSt	$\mathrm{mm}^{2} / \mathrm{s}$		1.0*	$\mathrm{E}+00$	
Permeability	m^{2}	darcy	$\mu \mathrm{m}^{2}$		9.869233	$E-01^{(11)}$	
		millidarcy	$\mu \mathrm{m}^{2}$	$10^{-3} \mu \mathrm{~m}^{2}$	$\begin{aligned} & 9.869233 \\ & 9.869233 \\ & \hline \end{aligned}$	$\begin{aligned} & E-04^{(11)} \\ & E-01^{(11)} \end{aligned}$	
ELECTRICITY, MAGNETISM							
Admittance	S	S	S		1.0*	$E+00$	
Capacitance	F	$\mu \mathrm{F}$	$\mu \mathrm{F}$		$1.0 *$	$E+00$	
Capacity, storage battery	C	A-hr	kC		$3.6 *$	E+00	
Charge density	$\mathrm{C} / \mathrm{m}^{3}$	$\mathrm{C} / \mathrm{mm}^{3}$	$\mathrm{C} / \mathrm{mm}^{3}$		1.0*	$E+00$	
Conductance	S	S	S		$1.0 *$	$E+00$	
		v (mho)	S		1.0*	E+00	
Conductivity	S/m	S / m	S / m		1.0*	$E+00$	
		v / m	S / m		1.0*	$\mathrm{E}+00$	
		mv / m	mS / m		1.0*	$\mathrm{E}+00$	
Current density	$\mathrm{A} / \mathrm{m}^{2}$	$\mathrm{A} / \mathrm{mm}^{2}$	$\mathrm{A} / \mathrm{mm}^{2}$		1.0*	$\mathrm{E}+00$	
Displacement	$\mathrm{C} / \mathrm{m}^{2}$	$\mathrm{C} / \mathrm{cm}^{2}$	$\mathrm{C} / \mathrm{cm}^{2}$		1.0 *	E+00	
Electric charge	C	C	C		1.0*	E+00	
Electric current	A	A	A		1.0*	E+00	
Electric dipole moment	C.m	C.m	C.m		1.0*	E+00	
Electric field strength	V/m	V/m	V/m		1.0*	$E+00$	
Electric flux	C	C	C		1.0*	$E+00$	
Electric polarization	$\mathrm{C} / \mathrm{m}^{2}$	$\mathrm{C} / \mathrm{cm}^{2}$	$\mathrm{C} / \mathrm{cm}^{2}$		1.0*	$E+00$	
Electric potential	V	V	V		$1.0 *$	$E+00$	
		mV	mV		$1.0 *$	$E+00$	
Electromagnetic moment	A $\cdot \mathrm{m}^{2}$	$\mathrm{A} \cdot \mathrm{m}^{2}$	A.m ${ }^{2}$		1.0*	E+00	
Electromotive force	V	V	V		1.0*	$\mathrm{E}+00$	
Flux of displacement	C	C	C		1.0*	$E+00$	

TABLE 2.2-TABLES OF RECOMMENDED SI UNITS (cont'd.)

Quantity and SI Unit	Customary Unit	Metric Unit		Conversion Factor* Multiply Customary Unit by Factor to Get Metric Unit
		SPE Preferred	Other Allowable	

ELECTRICITY, MAGNETISM

Frequency	Hz	cycles/s	Hz	1.0*	$\mathrm{E}+00$
Impedance	Ω	Ω	Ω	1.0*	$E+00$
Interval transit time	s / m	$\mu \mathrm{s} / \mathrm{ft}$	$\mu \mathrm{s} / \mathrm{m}$	3.280840	$\mathrm{E}+00$
Linear current density	A/m	A/mm	A/mm	1.0*	$\mathrm{E}+00$
Magnetic dipole moment	Wb-m	Wb•m	$\mathrm{Wb} \cdot \mathrm{m}$	1.0*	$E+00$
Magnetic field strength	A/m	A/mm	A/mm	1.0*	$\mathrm{E}+00$
		oersted	A/m	7.957747	E+01
		gamma	A/m	7.957747	E-04
Magnetic flux	Wb	mWb	mWb	1.0*	E+00
Magnetic flux density	T	mT	mT	1.0*	$\mathrm{E}+00$
		gauss	T	1.0*	E-04
Magnetic induction	T	mT	mT	1.0*	E+00
Magnetic moment	A.m ${ }^{2}$	A-m ${ }^{2}$	$\mathrm{A} \cdot \mathrm{m}^{2}$	$1.0 *$	$\mathrm{E}+00$
Magnetic polarization	T	mT	mT	1.0*	$\mathrm{E}+00$
Magnetic potential difference	A	A	A	1.0*	$E+00$
Magnetic vector potential	Wb/m	$\mathrm{Wb} / \mathrm{mm}$	$\mathrm{Wb} / \mathrm{mm}$	1	
Magnetization	A/m	A/mm	A/mm	1	
Modulus of admittance	S	S	S	1	
Modulus of impedance	Ω	Ω	Ω	1	
Mutual inductance	H	H	H	1	
Permeability	H/m	$\mu \mathrm{H} / \mathrm{m}$	$\mu \mathrm{H} / \mathrm{m}$	1	
Permeance	H	H	H	1	
Permittivity	F/m	$\mu \mathrm{F} / \mathrm{m}$	$\mu \mathrm{F} / \mathrm{m}$	1	
Potential difference	V	V	V	1	
Quantity of electricity	C	C	C	1	
Reactance	Ω	Ω	Ω	1	
Reluctance	H^{-1}	H^{-1}	H^{-1}	1	
Resistance	Ω	Ω	Ω	1	
Resistivity	$\Omega \cdot \mathrm{m}$	$\Omega \cdot \mathrm{cm}$	$\Omega \cdot \mathrm{cm}$	1	
		$\Omega \cdot \mathrm{m}$	$\Omega \cdot \mathrm{m}$	1	${ }^{(12)}$
Self inductance	H	mH	mH	1	
Surface density of charge	$\mathrm{C} / \mathrm{m}^{2}$	$\mathrm{mC} / \mathrm{m}^{2}$	$\mathrm{mC} / \mathrm{m}^{2}$	1	
Susceptance	S	S	S	1	
Volume density of charge	$\mathrm{C} / \mathrm{m}^{3}$	$\mathrm{C} / \mathrm{mm}^{3}$	$\mathrm{C} / \mathrm{mm}^{3}$	1	

ACOUSTICS, LIGHT, RADIATION

Absorbed dose	Gy	rad	Gy	1.0*	E-02
Acoustical energy	J	J	J	1	
Acoustical intensity	W/m ${ }^{2}$	W/cm ${ }^{2}$	W/m ${ }^{2}$	1.0*	$E+04$
Acoustical power	W	W	W	1	
Sound pressure	$\mathrm{N} / \mathrm{m}^{2}$	$\mathrm{N} / \mathrm{m}^{2}$	$\mathrm{N} / \mathrm{m}^{2}$	1	
Illuminance	Ix	footcandle	Ix	1.076391	$\mathrm{E}+01$
Illumination	IX	footcandle	Ix	1.076391	E+01
Irradiance	$\mathrm{W} / \mathrm{m}^{2}$	$\mathrm{W} / \mathrm{m}^{2}$	W/m ${ }^{2}$	1	
Light exposure	Ix.s	footcandle.s	Ix.s	1.076391	E+01
Luminance	$\mathrm{cd} / \mathrm{m}^{2}$	$\mathrm{cd} / \mathrm{m}^{2}$	$\mathrm{cd} / \mathrm{m}^{2}$	1	
Luminous efficacy	Im/W	Im/W	Im/W	1	

	Customary Unit	Metric Unit		Conversion Factor* Multiply Customary
Quantity and SI Unit		SPE Preferred	Other Allowable	Unit by Factor to Get Metric Unit

ACOUSTICS, LIGHT, RADIATION

Luminous exitance	$1 \mathrm{~m} / \mathrm{m}^{2}$	$1 \mathrm{~m} / \mathrm{m}^{2}$	$1 \mathrm{~m} / \mathrm{m}^{2}$		1	
Luminous flux	Im	Im	Im		1	
Luminous intensity	cd	cd	cd		1	
Quantity of light	f $\mathrm{m} \cdot \mathrm{s}$	talbot	$\mathrm{fm} \cdot \mathrm{s}$		1.0*	$E+00$
Radiance	W/(m².sr)	W/(m²-sr)	W/(m².sr)		1	
Radiant energy	J	J	J		1	
Radiant flux	W	W	W		1	
Radiant intensity	W/sr	W/sr	W/sr		1	
Radiant power	W	W	W		1	
Wave length	m	\AA	nm		1.0*	E-01
Capture unit	m^{-1}	$10^{-3} \mathrm{~cm}^{-1}$	m^{-1}	$10^{-3} \mathrm{~cm}^{-1}$	$\begin{aligned} & 1.0^{*} \\ & 1 \end{aligned}$	E+01
		m^{-1}	m^{-1}		1	
Radioactivity		curie	Bq		$3.7 *$	$E+10$

TABLE 2.3-SOME ADDITIONAL APPLICATION STANDARDS

Quantity and SI Unit		CustomaryUnit	Metric Unit		Conversion Factor*Multiply Customary Unit by Factor to Get Metric Unit		
		SPE Preferred	Other Allowable				
Capillary pressure	Pa		ft (fluid)	m (fluid)		3.048*	E-01
Compressibility of reservoir fluid	Pa^{-1}	psi ${ }^{-1}$	Pa^{-1}	kPa^{-1}	$\begin{aligned} & 1.450377 \\ & 1.450377 \\ & \hline \end{aligned}$	$\begin{aligned} & E-04 \\ & E-01 \end{aligned}$	
Corrosion allowance	m	in.	mm		2.54*	E+01	
Corrosion rate	m / s	$\begin{aligned} & \mathrm{mil} / \mathrm{yr} \\ & (\mathrm{mpy}) \end{aligned}$	mm/a		2.54*	E-02	
Differential orifice pressure	Pa	$\begin{aligned} & \text { in. } \mathrm{H}_{2} \mathrm{O} \\ & \left(\text { at } 60^{\circ} \mathrm{F}\right) \end{aligned}$	kPa	cm $\mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & 2.4884 \\ & 2.54^{*} \end{aligned}$	$\begin{aligned} & E-01 \\ & E+00 \end{aligned}$	
Gas-oil ratio	$\mathrm{m}^{3} / \mathrm{m}^{3}$	scf/bbl	$\begin{aligned} & \text { "standard" } \\ & \mathrm{m}^{3} / \mathrm{m}^{3} \\ & \hline \end{aligned}$		1.801175	E-01 ${ }^{(1) * *}$	
Gas rate	$\mathrm{m}^{3} / \mathrm{s}$	scf/D	$\begin{aligned} & \text { "standard" } \\ & \mathrm{m}^{3} / \mathrm{d} \end{aligned}$		2.863640	$\mathrm{E}-02^{(1)}$	
Geologic time	s	yr	Ma				
Head (fluid mechanics)	m	ft	m	cm	$\begin{aligned} & 3.048^{*} \\ & 3.048^{*} \end{aligned}$	$\begin{aligned} & \hline E-01 \\ & E+01 \end{aligned}$	
Heat exchange rate	W	Btu/hr	kW	kJ/h	$\begin{array}{r} 2.930711 \\ 1.055056 \\ \hline \end{array}$	$\begin{aligned} & E-04 \\ & E+00 \end{aligned}$	
Mobility	$\mathrm{m}^{2} / \mathrm{Pa} \cdot \mathrm{s}$	d/cp	$\mu \mathrm{m}^{2} / \mathrm{mPa} \cdot \mathrm{s}$	$\mu \mathrm{m}^{2} / \mathrm{Pa} \cdot \mathrm{s}$	$\begin{aligned} & 9.869233 \\ & 9.869233 \end{aligned}$	$\begin{aligned} & E-01 \\ & E+02 \end{aligned}$	
Net pay thickness	m	ft	m		3.048*	E-01	
Oil rate	$\mathrm{m}^{3} / \mathrm{s}$	bbl/	$\mathrm{m}^{3} / \mathrm{d}$		1.589873	E-01	
		short ton/yr	Mg/a	t/a	9.071847	E-01	
Particle size	m	micron	$\mu \mathrm{m}$		1.0*		
Permeability-thickness	m^{3}	md -ft	$\mathrm{md} \cdot \mathrm{m}$	$\mu \mathrm{m}^{2} \cdot \mathrm{~m}$	3.008142	E-04	
Pipe diameter (actual)	m	in.	cm	mm	$\begin{aligned} & \hline 2.54^{*} \\ & 2.54^{*} \end{aligned}$	$\begin{aligned} & E+00 \\ & E+01 \end{aligned}$	
Pressure buildup per cycle	Pa	psi	kPa		6.894757	$\mathrm{E}+00^{(2)}$	
Productivity index	$\mathrm{m}^{3} / \mathrm{Pa} \cdot \mathrm{s}$	bbl/(psi-D)	$\left.\mathrm{m}^{3} / \mathrm{kPa} \cdot \mathrm{d}\right)$		2.305916	$E-02^{(2)}$	
Pumping rate	$\mathrm{m}^{3} / \mathrm{s}$	U.S. gal/min	$\mathrm{m}^{3} / \mathrm{h}$	L/s	$\begin{aligned} & 2.271247 \\ & 6.309020 \end{aligned}$	$\begin{aligned} & E-01 \\ & E-02 \end{aligned}$	
Revolutions per minute	$\mathrm{rad} / \mathrm{s}$	rpm	rad/s	$\mathrm{rad} / \mathrm{m}$	$\begin{array}{r} 1.047198 \\ 6.283185 \\ \hline \end{array}$	$\begin{aligned} & E-01 \\ & E+00 \end{aligned}$	
Recovery/unit volume (oil)	$\mathrm{m}^{3} / \mathrm{m}^{3}$	bbl/(acre-ft)	$\mathrm{m}^{3} / \mathrm{m}^{3}$	$\mathrm{m}^{3} / \mathrm{ha} \cdot \mathrm{m}$	$\begin{array}{r} 1.288931 \\ 1.288931 \\ \hline \end{array}$	$\begin{aligned} & E-04 \\ & E+00 \end{aligned}$	
Reservoir area	m^{2}	Sq mile	km ${ }^{2}$		2.589988	E + 00	
		acre		ha	4.046856	E-01	
Reservoir volume	m^{3}	acre-ft	m^{3}	ha.m	$\begin{aligned} & 1.233482 \\ & 1.233482 \\ & \hline \end{aligned}$	$\begin{aligned} & E+03 \\ & E-01 \end{aligned}$	
Specific productivity index	$\mathrm{m}^{3} / \mathrm{Pa} \cdot \mathrm{s} \cdot \mathrm{m}$	bbl/(D-psi-ft)	$\mathrm{m}^{3}(\mathrm{kPa} \cdot \mathrm{d} \cdot \mathrm{m})$		7.565341	$\mathrm{E}-02^{(2)}$	
Surface or interfacial tension in reservoir capillaries	N/m	dyne/cm	mN / m		1.0*	$E+00$	
Torque	$\mathrm{N} \cdot \mathrm{m}$	lbf-ft	$\mathrm{N} \cdot \mathrm{m}$		1.355818	$E+00^{(3)}$	
Velocity (fluid flow)	m / s	ft /	m / s		3.048*	E-01	
Vessel diameter $1-100 \mathrm{~cm}$	m	in.	cm		2.54*	$E+00$	
above 100 cm		ft	m		3.048*	E-01	

[^3]| -459.67 to - 19 | | - 18 to 53 | | | 54 to 350 | | | 360 to 1070 | | | 1080 to 1790 | | | 1800 to 3000 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left({ }^{\circ} \mathrm{C}\right)$ | ($\left.{ }^{\circ} \mathrm{F}\right)$ | $\left({ }^{\circ} \mathrm{C}\right)$ | | $\left({ }^{\circ} \mathrm{F}\right)$ | $\left({ }^{\circ} \mathrm{C}\right)$ | | $\left({ }^{\circ} \mathrm{F}\right)$ | $\left({ }^{\circ} \mathrm{C}\right)$ | | (${ }^{\circ}$) | $\left({ }^{\circ} \mathrm{C}\right)$ | | (${ }^{\circ}$) | $\left({ }^{\circ} \mathrm{C}\right)$ | | (${ }^{(} \mathrm{F}$) |
| | | -21 78 | -18 | -04 | 122 | 54 | 1292 | 1872 | 360 | 6800 | 5822 | 1.080 | 1.9760 | 9822 | 1.800 | 3.2720 |
| $\begin{aligned} & -21 \mathrm{~s} \text { is }-45967 \\ & -26778-450 \end{aligned}$ | | -2123 | -17 | 14 | 128 | S5 | 1310 | 1878 | 370 | 6980 | 5878 | 1.090 | 1.9940 | 9878 | 1.810 | 3.2900 |
| $-26222-440$ | | -2661 | -16 | 32 | 13.3 | 56 | 1328 | 1933 | 380 | $\checkmark 160$ | 5933 | 1.100 | 2.012 .0 | 9933 | 1.820 | 3.3580 |
| $-25667-130$ | | -2612 | -15 | 50 | 139 | 57 | 1346 | 1989 | 390 | 1340 | 5989 | 1.110 | 2.0300 | 9989 | 1.830 | 33260 |
| -25111-420 | | -25 56 | -14 | 68 | 144 | 58 | 1364 | 2044 | 400 | 7520 | 6044 | 1.120 | 2.0480 | 1.0044 | 1.840 | 3.3440 |
| $-24556-110$ | | -2500 | -13 | 86 | 150 | 59 | 1382 | 2100 | 410 | 1700 | 6100 | 1.130 | 2.066 .0 | 1.0100 | 1,850 | 3.3629 |
| -24000-400 | | -2444 | -12 | 104 | 156 | 60 | 1500 | 2156 | 420 | 7880 | 6156 | 1.140 | 2.0840 | 1.0156 | 1,860 | 3.3800 |
| -234 $44-390$ | | -2389 | -11 | 122 | 161 | 61 | 1418 | 2211 | 430 | 8060 | 6211 | 1.150 | 2.1020 | 1.0211 | 1.870 | 3,3980 |
| -22889 -380 | | -2333 | -10 | 140 | 167 | 62 | 1436 | 2261 | 440 | 8246 | 6261 | 1.160 | 2.1200 | 1.0267 | 1,830 | 34160 |
| $-22333-310$ | | -22 28 | -9 | 158 | 172 | 63 | 1854 | 2322 | | 8420 | 6322 | 1.170 | 2.1380 | 1.0322 | 1.890 | 3.4340 |
| $-21778-360$ | | -2222 | -8 | 176 | 178 | 64 | 1812 | 2318 | 460 | 8600 | 6378 | 1.180 | 2,1560 | 1.0378 | 1.900 | 3.1520 |
| $-21222-350$ | | -2161 | -1 | 194 | 183 | 65 | 1490 | 2433 | 470 | 8780 | 6433 | 1.190 | 2.1740 | 1.043 .3 | 1.910 | 3.4700 |
| -20661-343 | | -2111 | - 6 | 212 | 189 | 66 | 1508 | 2489 | 480 | 8960 | 6189 | 1.200 | 2.1920 | 1.0889 | 1.920 | 34880 |
| $-20111-330$ | | -20 56 | -s | 230 | 194 | 67 | 1526 | 2544 | 490 | 9140 | 6544 | 1.210 | 2.2100 | 1.054 | 1.930 | 3.5060 |
| $-19556-323$ | | -2000 | -4 | 248 | 200 | 68 | 1544 | 2600 | 500 | 9320 | 6600 | 1.220 | 2.2280 | 1.0600 | 1.940 | 3.5245 |
| -19000-313 | | -19 44 | - 3 | 266 | 206 | 69 | 1562 | 2656 | S10 | 950 | 665.6 | 1.230 | 2.2460 | 1.0656 | 1.950 | 3.5420 |
| -184 44-300 | | -1889 | - 2 | 284 | 211 | 70 | 1580 | 2711 | 520 | 9680 | 6711 | 1.240 | 2.264 C | 1.0711 | 1.960 | 3.5600 |
| $-17887-290$ | | -1833 | -1 | 302 | 217 | 11 | 1598 | 2167 | 530 | 9860 | 6767 | 1.250 | 2.2820 | 1.0767 | 1.970 | 3.5780 |
| $-17333-280$ | | -178 | 0 | 320 | 222 | 12 | 1616 | 2822 | S40 | 1.0040 | 6822 | 1.260 | 2.3000 | 1.0822 | 1.980 | 3.5969 |
| -169 53-273 is -15967 | | -172 | 1 | 338 | 228 | 13 | 1634 | 2878 | 550 | 1.0220 | 6878 | 1.270 | 2.3180 | 1.0878 | 1.990 | 3.6140 |
| $\begin{array}{ll} -16889 & -212 \\ -16778 & -270 \\ -16272 & -260 \\ -15667 & -250 \\ -15111 & -240 \end{array}$ | -3st 6 | -161 | 2 | 356 | 233 | 14 | 1652 | 2933 | 560 | 1.0400 | 6933 | 1.280 | 2.3360 | 1,093 3 | 2.000 | $3.032=$ |
| | - 4540 | -161 | 3 | 374 | 239 | is | 1670 | 2989 | 570 | 1.0580 | 6989 | 1.290 | 2.3540 | 1.0989 | 2.010 | 3.650 C |
| | -1360 | -156 | 4 | 392 | 2:4 | 16 | 1688 | 3044 | 580 | 1.076 ? | 1944 | 1.300 | 2.3720 | 1.1044 | 2.020 | 3.6680 |
| | -180 | -150 | s | 410 | 250 | 11 | 1736 | 3100 | 590 | 1.0940 | 1100 | 1.310 | 2.3900 | 1.1100 | 2.030 | 3.686 ? |
| | - 000 | -144 | 6 | 428 | 256 | 18 | 1724 | 3156 | 600 | 1.1120 | 1156 | 1320 | 2.4080 | 1.115 6 | 2.040 | 3.7040 |
| $\begin{array}{ll} -14556 & -230 \\ -14000 & -220 \\ -13444 & -210 \\ -12989 & -200 \\ -12333 & -190 \end{array}$ | -3820 | -139 | 1 | 446 | 261 | 19 | 1742 | 3211 | 610 | 1.1300 | 2211 | 1.330 | 2.4260 | 1.1211 | 2.050 | 3.722 C |
| | -3640 | -133 | 8 | 464 | 267 | 80 | 1760 | 3267 | 620 | 1.1480 | 7267 | 1.340 | 2.4440 | 1.1267 | 2.060 | 3.740? |
| | -3460 | -128 | 9 | 492 | 212 | 81 | 1718 | 3322 | 630 | 1.1660 | 1322 | 1.350 | 2.4620 | 1.1322 | 2.070 | 3.758 0 |
| | -3280 | -122 | 10 | S00 | 278 | 82 | 1796 | 3318 | 640 | 1.1840 | 1378 | 1.360 | 2.4800 | 1.1378 | 2.080 | 3.1760 |
| | -3100 | -111 | 11 | S18 | 283 | 83 | 1814 | 3433 | 650 | 1.2020 | 1433 | 1.370 | 2.4980 | 1.1433 | 2.090 | 3.9940 |
| $\begin{array}{ll} -11178 & -180 \\ -11222 & -170 \\ -10667 & -160 \\ -10111 & -150 \\ -9556 & -140 \end{array}$ | -2920 | -111 | 12 | 536 | 289 | 84 | 1832 | 2489 | 660 | 1.2200 | 1489 | 1.380 | 2,5160 | 1.188 | 2.100 | 3.8120 |
| | -2140 | -106 | 13 | 554 | 294 | 85 | 1850 | 3544 | 670 | 1.2380 | 7544 | 1.390 | 2.5340 | 1.1544 | 2.110 | 3.8300 |
| | -2560 | -100 | is | 512 | 300 | 86 | 1868 | 3600 | 680 | 1.2560 | 7600 | 1.400 | 2.5520 | 1.1600 | 2.120 | 3.8480 |
| | -2380 | -944 | is | 590 | 306 | 81 | 1886 | 3656 | 690 | 1.2740 | 7656 | 1.410 | 2.5700 | 1.1656 | 2.130 | 3.8660 |
| | -2200 | -889 | 16 | 608 | 311 | 88 | 1904 | 3711 | 700 | 1.2920 | 171 | 1.420 | 2.5880 | 1,171.1 | 2.140 | 3.8840 |
| $\begin{array}{ll} -9000 & -130 \\ -8444 & -120 \\ -7889 & -110 \\ -7333 & -100 \\ -7056 & -95 \end{array}$ | -2020 | -833 | 11 | 626 | 311 | 89 | 1922 | 3161 | 110 | 1,3100 | 1167 | 1.430 | 2.6060 | 1.1767 | 2.150 | 3.907 C |
| | -1840 | - 178 | 18 | 644 | 322 | 90 | 1940 | 3822 | 120 | 1.3280 | 7822 | 1,440 | 2,6250 | 1,1822 | 2.160 | 3.9200 |
| | -1660 | - 122 | 19 | 662 | 328 | 91 | 1958 | 3878 | 130 | 1.3460 | 7818 | 1.450 | 2.6420 | 1.187 .8 | 2.170 | 3.9380 |
| | -1480 | -667 | 20 | 680 | 333 | 92 | 1976 | 3933 | 140 | 1.3640 | 1933 | 1960 | 2.6600 | 1.193.3 | 2.180 | 3.9560 |
| | -1390 | -611 | 21 | 698 | 339 | 93 | 1994 | 3989 | 150 | 1.3820 | 1989 | 1.470 | 2.6780 | 1.1989 | 2.190 | 3.974 .0 |
| $\begin{aligned} & -6778-90 \\ & -6500-85 \\ & -6222-80 \\ & -5945-75 \\ & -5667-70 \end{aligned}$ | -1300 | - 556 | 22 | 116 | 344 | 94 | 2012 | 4044 | 760 | 1.4000 | 8044 | 1.480 | 2.6960 | 1.2044 | 2.200 | 3.9920 |
| | -1210 | - 500 | 23 | 134 | 350 | Qs | 2030 | 4100 | 170 | 1.4180 | 8100 | 1.490 | 2.1140 | 1.2100 | 2.210 | 4.0100 |
| | -1120 | 44 | 24 | 152 | 356 | 9 | 2048 | 4156 | 780 | 1.4360 | 8156 | 1.500 | 2.1320 | 1.2156 | 2.220 | 4.0280 |
| | -1030 | - 389 | 25 | 110 | 361 | 91 | 2056 | | | 1.45:0 | 8211 | 1.510 | 2.1500 | 1.2211 | 2.230 | 4.0460 |
| | -940 | -333 | 26 | 788 | 367 | 98 | 2084 | 4261 | | 1.4720 | 8267 | 1.520 | 2.7680 | 1.2267 | 2.240 | 4.0640 |
| $\begin{aligned} & -5389-65 \\ & -5111-60 \\ & -4835-55 \\ & -4556 \text { - } 50 \\ & -1278 \text { - } 15 \end{aligned}$ | -850 | - 218 | 21 | 806 | 312 | 99 | 2102 | 4322 | 810 | 1.4900 | 8322 | 1.530 | 2.7860 | 1.2322 | 2.250 | 4.0820 |
| | - 760 | - 222 | 28 | 824 | 378 | 100 | 2120 | 4378 | 820 | 1.5080 | 8378 | 1.540 | 2.8040 | 1.2378 | 2.260 | 4.1000 |
| | - 670 | -167 | 29 | $8+2$ | 433 | 110 | 2300 | 4433 | 830 | 1.5260 | 8433 | 1.550 | 2.8220 | 1.2433 | 2.270 | 4.1180 |
| | - 580 | - 111 | 30 | 860 | 489 | 120 | 2480 | 4489 | 840 | 1.5440 | 8489 | 1.560 | 2.8400 | 1.2489 | 2.280 | 4.1360 |
| | - 990 | -056 | 31 | 878 | 544 | 130 | 2660 | 4544 | | 1.5620 | 8544 | 1.570 | 2.8580 | 1.254 .4 | 2.290 | 4.1540 |
| $-4000-40-400$ | | 0 | 32 | 896 | 600 | 140 | 2840 | 4600 | 860 | 1.5800 | 8600 | 1.580 | 2.8760 | 1.2600 | 2.300 | 4,1720 |
| $-3945-39 \quad-382$ | | 056 | 33 | 914 | 656 | 150 | 3020 | 4656 | 870 | 1.5980 | 8656 | 1.590 | 2,8990 | 1.2656 | 2.310 | 4.1900 |
| $-3889-38-364$ | | 111 | 34 | 932 | 11 | 160 | 3200 | 471 | 880 | 1.6160 | 871.1 | 1.600 | 2.9120 | 1.2711 | 2.320 | 4.2080 |
| $-3834-37 \quad-346$ | | 167 | 35 | 9s 0 | 161 | 170 | 3380 | 4761 | | 1.6340 | 8761 | 1.610 | 2.9300 | 1.276.7 | 2.330 | 4.2260 |
| $-3778-36-328$ | | 222 | 36 | 968 | 822 | 180 | 3560 | 4822 | | 1.6520 | 8822 | 1.620 | 2.9480 | 1.2822 | 2.340 | 4.2440 |
| $\begin{aligned} & -3323-35 \\ & -3667-34 \\ & -3612-33 \\ & -3556-32 \\ & -3500-31 \end{aligned}$ | - 310 | 278 | 37 | 986 | 878 | 190 | 3740 | 4878 | | 1.6700 | 8978 | 1.630 | 2.9660 | 1,2878 | 2.350 | 4.26: 0 |
| | - 292 | 333 | 38 | 1004 | 933 | 200 | 3920 | 4933 | | 1.6880 | 8933 | 1.640 | 2.9840 | 1.2933 | 2.360 | 4.2800 |
| | - 212 | 389 | 39 | 1022 | 989 | 210 | 4100 | 4989 | | 1.7060 | 8989 | 1.650 | 3.0020 | 1.298.9 | 2.370 | 4.2980 |
| | - 256 | 444 | 40 | 1040 | 1044 | 220 | 4280 | 5044 | | 1.7240 | 9044 | 1.660 | 3.0200 | 1.3044 | 2.380 | 4,3160 |
| | -238 | 500 | 41 | 1058 | 1100 | 230 | 4460 | 5100 | 950 | 1.7420 | 9100 | 1.670 | 3.0380 | 1.3100 | 2.390 | 4.3340 |
| $\begin{aligned} & -3444-30 \\ & -3389-29 \\ & -3333-28 \\ & -3278-27 \\ & -3222-26 \end{aligned}$ | - 220 | 556 | 42 | 1076 | 1156 | 240 | 4640 | 5156 | | 1.7600 | 9156 | 1.680 | 3.0560 | 1.3433 | 2.450 | 4.4420 |
| | - 202 | 611 | 43 | 1094 | 1211 | 250 | 4820 | 5211 | 970 | 1.7780 | 9211 | 1.690 | 3.0740 | 1,371.1 | 2.500 | 4.5320 |
| | -184 | 667 | 44 | 1112 | 1261 | 260 | 5000 | 5267 | 980 | 1.7960 | 9261 | 1.700 | 3.0920 | 1.3989 | 2.550 | 4.6220 |
| | - 166 | 122 | 45 | :130 | 1322 | 270 | S180 | 5322 | | 1.8140 | 9322 | 1.710 | 3.1100 | 1.4267 | 2.600 | 4.7120 |
| | -148 | 178 | 46 | 1148 | 1378 | 280 | 5360 | 53781 | 1.000 | 1.8320 | 9378 | 1.720 | 3.1280 | 1.4544 | 2.650 | 4.6020 |
| $\begin{aligned} & -3167-25 \\ & -3111-24 \\ & -3056-23 \\ & -3000-22 \\ & -2945-21 \end{aligned}$ | -130 | 833 | 47 | 1166 | 1433 | 290 | Ssto | | | 1.8500 | 9433 | | 3.1460 | 1.482.2 | | 4.8920 |
| | - 112 | 889 | 48 | 1184 | 1489 | 300 | 5720 | 54891 | 1.020 | 1.8680 | 9489 | 1.740 | 3.1640 | 1.5100 | 2.150 | 4.9820 |
| | -94 | 944 | 49 | 1202 | 1544 | 310 | 5900 | 554.4 | 1,030 | 1.886 .0 | 9544 | 1.750 | 3.1820 | 1,537.8 | 2.800 | 5.0720 |
| | -16 | 100 | 50 | 1220 | 1600 | 320 | 6080 | 5600 | 1.040 | 1.9040 | 9600 | 1.760 | 3.2000 | 1,565. 1 | 2.850 | 5.1620 |
| | - 58 | 106 | 51 | 1238 | 1656 | 330 | 6260 | 56561 | 1.050 | 1,9220 | 9656 | 1,710 | 3.2180 | 1,593] | 2.900 | 5.2520 |
| $\begin{aligned} & -2889-20 \\ & -28: 40 \\ & \hline \end{aligned}$ | | 111 | 52 | 1256 | 1711 | 340 | 6440 | S711 1 | 1.060 | 1.9400 | 971 | 1.780 | 3.2360 | 1.621 1 | 2.950 | 5.3420 |
| | | 117 | 53 | 1274 | 1767 | 350 | 6620 | 57671 | | 1.9580 | 9767 | 1.790 | 3.2540 | 1.6489 | 3.000 | 5.432 .0 |

Notes

[^0]: *The first syllable of every prefix is accented to assure that the prefix will retain its identity. Therefore, the preferred pronunciation of kilometer places the accent on the first syllable, not the second.
 **Approved by the 15th General Conference of Weights and Measures (CGPM), May-June 1975
 Approved by the 15th General Conference of Weights and Measures (CGPM), May-June 1975.
 \dagger These terms should be avoided in technical writing because the denominations above 1 million are different in most other countries, as indicated in the last column
 \ddagger While hecto, deka, deci, and centi are SI prefixes, theiruse generally should be avoided except for the SI unit multiples for area, volume, moment, and nontechnical use of centimeter, as for body and clothing measurement.

[^1]: *Unless a number of rounded values are to appear in a given problem, most roundings conform to the first two procedures - i.e., rounding upward when the first digit discarded is 5 or higher.

[^2]: *Note that the kilogram (not the gram) is the coherent SI unit of mass.

 * The are is an old metric unit.

[^3]: *An asterisk indicates the conversion factor is exact using the numbers shown; all subsequent numbers are zeros.
 **See Notes 1-3 on page 1598.

