SPE DISTINGUISHED LECTURER SERIES

is funded principally through a grant of the

SPE FOUNDATION

The Society gratefully acknowledges those companies that support the program by allowing their professionals to participate as Lecturers.

And special thanks to The American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME) for their contribution to the program.
Crude Oil Emulsions: Everything You Wanted to Know But Were Afraid to Ask

Sunil Kokal

Saudi Aramco
Outline

- Emulsions
 - What are emulsions?
 - Types of emulsions
 - Where do they form?
 - Stability of emulsions
 - Challenges during oil production
- Reservoir and production aspects of emulsions
- Demulsification: oil-water separation
- Emulsion treatment programs
- Recommendations
Some Examples of Emulsions

Milk

Mayonnaise
Definitions

- **Emulsion**: An emulsion is a colloidal dispersion of one liquid (disperse phase) in another (continuous phase).

- **Types of Emulsion**:
 - Water-in-oil
 - Oil-in-water
 - Complex/multiple emulsions

- **Macroemulsions**, size > 0.1 µm
- **Microemulsions**, size < 0.1 µm

Oil-field emulsions are water-in-oil macroemulsions
Emulsion Photomicrographs

a) Water-in-oil emulsion

b) Oil-in-water emulsion

c) Water-in-oil-in-water emulsion

d) Presence of solids

10μ
Where do they form?
Where do we encounter emulsions?
Emulsion Stability

- Emulsions are inherently unstable
- Classified based on their kinetic stability
 - loose → few minutes
 - medium → tens of minutes
 - tight → hours, days
- Presence of emulsifying agents
- Films act as physical barriers to coalescence
- Factors Affecting Stability
Tight Emulsion Loose Emulsion
An example of a very tight emulsion
Factors affecting stability

- Heavy polar material in the crude oil
- Fine solids including **organics** (asphaltenes, waxes) and **inorganics** (clays, scales, corrosion products)
- Temperature
- Droplet size and and droplet size distribution
- pH of the brine
- Brine composition
Mechanism of emulsion stabilization

Water droplet + Asphaltene aggregate → Asphaltene Stabilized water droplet

Droplets resist coalescence due to steric/colloidal stabilization
Photo-micrograph of an emulsion showing interfacial films
Measurement of stability

- Determines the ease of separation
- Most common is the bottle test
- Used for
 - water separation over time
 - water separation with demulsifier dosage
 - screening demulsifiers
- Standard ASTM method for BS&W
- Developed at Saudi Aramco: ESI or Emulsion Separation Index
Emulsion Challenges During Oil Production

● Negatives:
 ▪ Water and salt in sellable crude
 ▪ Oil in disposal water…injectivity concerns
 ▪ Flow assurance concerns
 ▪ Productivity decline in wells
 ▪ Higher demulsifier and treatment costs
 ▪ Equipment trips and upsets
 ▪ Higher oil production costs

● Positives:
 ▪ None!
Reservoir Aspects of Emulsions

- During drilling operations
- Acidization of wells
- Well treatments
- EOR/IOR operations
Drilling Operations

- Drilling muds can form tight emulsions
- May cause formation damage
- Incorrect estimation of reserves
- Most likely to form in reservoirs with:
 - Lower APIs (< 25°)
 - Lower temperatures (< 150°F)
 - Poorer rock quality (low porosities and permeabilities)
 - Higher amounts of asphaltenes
- Recommend compatibility studies
Acidization Operations

- pH affects emulsion stability
- Severe emulsion upsets after acid stimulation
- Occurs due to solid precipitates mainly asphaltenes
- Form very stable and tight emulsion and can kill a well
- Proper design of acid treatment is necessary to avoid emulsion upsets
Effect of pH on emulsion stability
EOR/IOR Operations

- Chemical (ASP) method prone to emulsion problems
- CO2 injection \rightarrow asphaltene precipitation \rightarrow tight emulsions
- Microbial \rightarrow sludges
- Thermal \rightarrow heavy oil \rightarrow solid stabilized emulsions
- Much higher demulsifier treatment costs
Production Aspects of Emulsions

- High viscosities of emulsions → flow assurance issues
- Productivity declines
- Oil-water separation concerns
- Facilities operational concerns
- Off-spec crude and disposal water
Viscosity of emulsions

Water Cut, %

Relative Viscosity $\frac{\mu_e}{\mu_o}$

- Very tight emulsion
- Tight emulsion
- Medium emulsion
- Loose emulsion
- Very loose emulsion
Demulsification

- Breaking of a crude oil emulsion into oil and water phases
- From a process point of view:
 - Rate or speed of separation
 - Residual water in oil
 - Residual oil in water
- Oil should not contain more than 0.2% BS&W and 10 PTB salt
- Water should contain less than 100 ppm of oil
Mechanisms Involved in Demulsification

- Two step process
 - Flocculation (or aggregation, or agglomeration or coagulation)
 - Coalescence
- Either of these steps can be the rate determining step
Flocculation

- Droplets clump together forming “floccs”
- May not lose their identity
- Rate of flocculation depends on
 - Watercut of the emulsion
 - Temperature
 - Viscosity of the oil
 - Density difference
 - Electrostatic field
Coalescence

- Water droplets fuse or coalesce to form a larger drop
- Coalescence is enhanced by
 - High rate of flocculation
 - Absence of mechanically strong IFF
 - High interfacial tensions
 - High watercuts
 - Low oil viscosity
 - Low interfacial viscosity
 - Chemical demulsifiers
 - Higher temperatures
Methods of Emulsion Breaking

- Any or combination of:
 - Thermal…providing heat
 - Mechanical…residence time
 - Electrical…electrostatic grids
 - Chemical…adding demulsifiers

- Demulsification methods very application specific

- Dynamic process: emulsions and conditions change with time
Emulsion Video
Emulsion Treatment Program

- Very site specific
- Experience and engineering judgment
- Data needed:
 - Laboratory studies
 - Data from nearby wells/fields
 - Field trials
- Balance between chemical, thermal, mechanical and electrical
- Optimization
Emulsion Treatment Program

Questions?

- Are we using the best demulsifier?
- What is the retention time?
- What type of emulsion?
- What is the water cut?
- System heated, or can it be?
- Range of operating conditions?
- Feed constant or changing?
Emulsion Treatment Program

Guidelines

- Each production stream unique
- Laboratory tests with actual samples
- Incorporate flexibility during design
- Planning early
- Pilot and field trials
- Re-engineering and retrofitting
- Record data for diagnosis
- Review periodically
Emulsion Treatment Program

Prevention

- Fine solids management
 - Scales: Inhibit scale formation
 - Asphaltenes: management, dispersants
 - Corrosion products: inhibitors
- Acidization…review field performance
- Commingling of crudes…compatibility
- Mixing and shear…reduce, optimize
- Check compatibility of chemicals
Emulsion Treatment Program

Demulsifier Selection & Optimization

- Bottle tests...representative samples
- Field testing with promising demulsifiers
- Proper demulsifier mixing
- Demulsifier overdosaging
- Understanding the causes of tightness
- Evaluating the process
- Maintaining a database
- Demulsifier usage
 - Less than 5 ppm to over 200 ppm
 - Generally between 10 to 50 ppm
Demulsifier costs at a separation plant
Recommendations

- Diagnose... your emulsions and your hardware
- Retrofit... your vessels... after economic analysis
- Perform... field trials... periodically
- Monitor... performance
- Reduce... shear and fine solids... scales, asphaltenes, clays
- Maintain... records
- Proactive... in using new technology...
One thing to remember...

Crude Oil Emulsions:
Society of Petroleum Engineers
Petroleum Engineering Handbook
Volume 1, Chapter 12
THANK YOU!

SPE DISTINGUISHED LECTURER SERIES

is funded principally through a grant of the

SPE FOUNDATION

The Society gratefully acknowledges those companies that support the program by allowing their professionals to participate as Lecturers.

And special thanks to The American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME) for their contribution to the program.