SPE Workshop: Improve Business Impact and Value with Advanced Data-Driven Analytics 19 - 20 Feb 2018 Embassy Suites Energy Corridor Houston, Texas, USA

Schedule

Monday, February 19

07:00 - 08:00
08:00 - 08:15
08:15 - 09:15
Opening Session: The State of Technology for Digital Transformation Grand Texan
Moderator(s) Andrei Popa, Chevron; Peng Xu, ExxonMobil; Keith Holdaway, SAS

Data-driven analytics is transforming Oil and Gas – from more accurate interpretation of geological and seismic data to more sophisticated reservoir modeling, to improved drilling, completion, and production decisions. Analytics provide more robust and timely solutions to business problems. In this session, we will discuss the landscape of data-driven analytics, the promises, the challenges, and the solutions from both a technological and an organizational point of view. 

Presenter 1: Thomas Halsey, ExxonMobil
Presentation: Business Value from Data Analytics: A Field Guide

Presenter 2: Iraj Ershaghi, University of Southern California
Presentation: Human Factors in Implementing Digital Solutions

09:15 - 10:45
Session 1: Reservoir Characterization Grand Texan
Session Chairpersons Yasin Hajizadeh, Microsoft; Mohamed Sidahmed, BP

This session discusses recent developments in the application of machine learning and advanced analytics in reservoir characterization. Speakers will cover a broad range of challenges including interpretation of seismic, well logs and tests, rock and fluid properties and integration of these data to build reliable G&G models, faster and cheaper. Practical tips will also be shared to select appropriate machine learning algorithms and how to avoid their common pitfalls when applied to reservoir characterization problems.  

Keynote Speaker: Roland Horne, Stanford University
Presentation: Big Data and Machine Learning in Reservoir Analysis


Presenter 2: Brendon Hall, Enthought
Presentation: Transforming Geoscience with AI: Lessons Learned From the Front Line
 
Presenter 3: Adam Halpert, Chevron
Presentation: Machine Learning Approaches for Seismic Reservoir Characterization

10:45 - 11:15
11:15 - 12:45
Session 2: Drilling Optimization Grand Texan
Session Chairpersons Damian Burch, ExxonMobil; Keith Holdaway, SAS

This session will explore applications of statistical inference,​ a fusion of geological and operations data, pattern recognition, and the real-time analysis of streaming data to drilling engineering.  The most important application areas include improving drilling efficiency, detecting and mitigating drilling problems, reducing well construction costs, and minimizing non-productive time.  In addition, we welcome discussions of drilling automation, which has historically faced skepticism from the Oil & Gas industry even as drilling activity has steadily increased and automation has become pervasive in other sectors.

Presenter 1: Mark Anderson, Shell
Presentation: Making Actionable Information and Automated Decisions from Real Time Drilling Data


Presenter 2: Robello Samuel, Halliburton
Presentation: Towards Never Offline - Drilling Optimization Through Invasive Data Analytics


Presenter 3: Ben Spivey, ExxonMobil
Presentation: A Well-Site Based Advisory System for On-Bottom Drilling Optimization

12:45 - 14:00
14:00 - 15:30
Session 3: Production, Completions, and Operations Grand Texan
Session Chairpersons Peter Ashton, Aera Energy; Luigi Saputelli, Frontender Corporation

In the past several years, there ​has been significant research and technological advancement in the area of field development and operation through the use of data mining and statistical modeling. Examples include better well rates estimation, more insightful and timely understanding of well behaviors, more effective completion operations, predicting failures before they happen, etc. This session will investigate the use of data analytics in the areas of production, completion, and operations to optimize production and reduce operating expenses.     

Presenter 1: Amr S El-Bakry, Exxon Mobil
Presentation: PD2A Technical Section

 

Presenter 2: John W Fisher III, Massachusetts Institute of Technology
Presentation: Information Gathering Under Resource Constraints - Algorithmic Approaches for Transforming Data to Action


Presenter 3: John Tolle, Shell
Presentation: Combining Simple Parametric Models with Machine Learning to Make Inferences About the Impact of Completions Design

15:30 - 16:00
16:00 - 17:30
Session 4: Unconventional Resources Grand Texan
Session Chairpersons Damian Burch, ExxonMobil; Razi Gaskari, Consultant

The Oil and Gas industry has historically made extensive use of physics-based models for development and production.  Such models have been difficult to apply and correctly interpret for unconventional resources.  However, the scale of most unconventional plays is enormous, generating huge amounts of data and with it the hope that data-driven methods can successfully improve business results.  This session will focus on applications of data analytics to the optimization of unconventional resource development and operation.  We will explore how statistical models, machine learning, and artificial intelligence can use hard data (i.e. field measurements) to improve upon the “analysis by anecdote”, preconceived notions, and biases from conventional development that have dominated this segment of the petroleum industry.  

Presenter 1: Jonathan Parker, Marathon Oil
Presentation: Evaluation of Production Prediction Models in the Interpolation and Extrapolation Space


Presenter 2: Ahmed Ouenes, FracGeo
Presentation: Three Decades of Reservoir Modeling using Artificial Intelligence: Lessons Learned and Future Trends for Unconventionals


Presenter 3: Ligang (Larry) Lu, Shell
Presentation: Machine Learning for Unconventional Asset Appraisal

17:30 - 19:00

Tuesday, February 20

07:00 - 08:00
08:00 - 09:30
Session 5: Reservoir Management, Surveillance, and Optimization Grand Texan
Session Chairpersons Iraj Ershaghi, University of Southern California; Turgay Ertekin, Penn State University

Addressing everyday issues associated with Reservoir Management, Surveillance, and Optimization require models that are accurate and execute in seconds/minutes with meaningful results. So far our industry has been forced to sacrifice one in order to accomplish the other. Accurate models have proven to be unbearably slow, and fast techniques (e.g., reduced physics, reduced order, statistics-based models) approximate the problem to the edge of irrelevance.  This session will focus on technologies that address both accuracy and speed, simultaneously.      

Presenter 1: Yasin Hajizadeh, Microsoft
Presentation: Recursive Modeling for Fast Model Updating in Reservoir Surveillance


Presenter 2: Turgay Ertekin, Penn State University
Presentation: Structuring an Artificial-Neural-Network based Toolbox for Reservoir Engineering Applications


Presenter 3: Chet Ozgen, Nitec LLC
Presentation: AI-based Agents for Parameter Selection Decision in Assisted History Matching Processes

09:30 - 10:00
10:00 - 11:30
Session 6: Safety and Environment Grand Texan
Session Chairpersons Peter Ashton, Aera Energy; Razi Gaskari, Consultant

The Oil and Gas industry continues to face increased regulations and the need for responsible environmental stewardship to maintain our license to operate. Data analytics is being used to improve safety and environmental performance through such techniques as text mining, pattern recognition, and ​real-time analysis of streaming sensor data. This session will explore some of the analytical opportunities identified in the safety and environmental arena.    

Presenter 1: Cliff Neuman, University of Southern California
Presentation: Managing Resilience to Cyber Threats in Oil and Gas Infrastructure


Presenter 2:  Antonio Paiva, ExxonMobil
Presentation: Data-Driven Indicators of the Likelihood of Safety Incidents


Presenter 3: Razi Gaskari, Consultant

Presentation: Well Production Optimization for Unconventional Reservoirs Using Data-Driven Approach

11:30 - 13:00
13:00 - 14:30
Session 7: Surface, Facilities, and Reliability Grand Texan
Session Chairpersons Detlef Hohl, Shell; Razi Gaskari, Consultant

Subsurface and surface facilities monitoring and operations continue to pose severe technical and cost challenges in Oil and Gas. Recent advancements of Internet-of-Things such as cheap sensors and ubiquitous video surveillance, data analytics and visualization technologies, and easy access to computing make it possible to provide real-time actionable information to operators. The effective adoption of these technologies will improve operation (e.g., prevention instead of reactive intervention) as well as efficiency. This session will present case studies for applying these new technologies in the Oil and Gas subsurface, facilities and maintenance space.   

Presenter 1: Pradeep Kumar Shetty, Schlumberger
Presentation: Data Acquisition to Business Value Realization – Challenges in Monitoring Surface Equipments


Presenter 2: Deval Pandya, Shell
Presentation: TBD


Presenter 3: Robert Shelley, Carbo Ceramics
Presentation: Artificial Intelligence Guides Completion Optimization in Unconventional Shale Plays; A Case History 

14:30 - 15:00
15:00 - 16:30
Session 8 Panel: Looking Ahead - AI Technologies for Oil and Gas - Opportunities and Challenges Grand Texan
Moderator(s) Andrei Popa, Chevron; Peng Xu, ExxonMobil; Iraj Ershaghi, University of Southern California

In the past few years, we have witnessed impactful and rapid advancement of AI technologies largely driven by business opportunities in the Internet industries. To harvest the benefit of these technologies to Oil and Gas, however, is non-trivial given our industry’s unique challenges such as datasets with rich features, complex physical systems and dynamic processes, data and model uncertainties, a strong requirement of domain knowledge, lack of workforce familiar with these technologies, etc. As a result, such advancement generates excitement as well as hypes and confusion in our industry. In this session, we would like to discuss emerging opportunities such as technical themes applicable to Oil & Gas applications and ways to address the challenges.      

Panelist 1: Louis Desroches, Intel
Presentation: Distributed Data Analytics – From Edge to Cloud; From Descriptive to Cognitive


Panelist 2: Mohamed Al Marzouqi, ADNOC
Presentation: Leveraging Data Analytics and AI to Achieve Greater Performance and Efficiency

16:30 - 16:45