spedc_1211_70

SPE Drilling & Completion – featured papers

View the entire contents of the December 2011 issue.

Completion Design and Execution

151970-PA – Completing the First Big Bore Gas Wells in Lunskoye–a Case History
C. Zerbst, SPE, and J. Webers, SPE, Sakhalin Energy Investment Company Limited

134326-PA – Numerical Simulations of Sand-Screen Performance in Standalone Applications
Somnath Mondal, SPE, and Mukul M. Sharma, SPE, University of Texas at Austin; and Rajesh A. Chanpura, SPE, Mehmet Parlar, SPE, and Joseph A. Ayoub, SPE, Schlumberger

Drilling and Completion Fluids

140868-PA – Development of Water-Based Drilling Fluids Customized for Shale Reservoirs
J.P. Deville, B. Fritz, and M. Jarrett, Halliburton

135166-PA – Protecting the Reservoir With Surfactant Micellar Drill-In Fluids in Carbonate-Containing Formations
Tianping Huang, SPE, James B. Crews, SPE, and David E. Clark, SPE, Baker Hughes

141447-PA – Stabilizing Viscoelastic Surfactants in High-Density Brines
R. van Zanten, SPE, Halliburton

130579-PA – Laminar and Turbulent Friction Factors for Annular Flow of Drag-Reducing Polymer Solutions in Coiled-Tubing Operations
Chinenye C. Ogugbue, SPE, and Subhash N. Shah, SPE, Well Construction Technology Center, University of Oklahoma

ohmsett_70

Mitigating Disaster–A Look at the Ohmsett Oil Spill Research and Test Facility

Robin Beckwith, Staff Writer JPT/JPT Online

On 11 October 2011, the X Prize Foundation announced the winners of the USD 1.4 million Wendy Schmidt Oil Cleanup X CHALLENGE, launched during the summer of 2010 in the wake of the Deepwater Horizon oil spill disaster in the US Gulf of Mexico. According to a press release, “the competition inspired entrepreneurs, engineers, and scientists worldwide to develop innovative, rapidly deployable, and highly efficient methods of capturing crude oil from the ocean surface.” Emerging from an original field of more than 350 submissions from all over the world, Elastec/ American Marine of Carmi, Illinois, captured the USD 1 million first prize, with Norway’s NOFI Tromsø awarded the USD 300,000 second prize; no contestant’s cleanup system qualified to receive third prize.

Testing the 10 finalists’ technologies in order to determine the winner would have been impossible were it not for a facility called Ohmsett (Oil and Hazardous Materials Environmental Test Tank). What is Ohmsett, and why is it so critical to the development of oil spill prevention and mitigation technology?

Read the full article in the December 2011 issue of JPT

shetland_70

West of Shetland Development Gathers Momentum

John Sheehan, JPT Contributing Editor

BP is ramping up its West of Shetland operations with the UK government approval to push ahead with the second phase of its giant Clair field development, Clair Ridge. Plans to redevelop the Schiehallion and Loyal fields with a new floating production, storage, and offloading vessel (FPSO) are also gathering pace.

The Clair reservoir is the largest known hydrocarbon resource on the UK Continental Shelf (UKCS), occupying an area of 220 sq km. It is located approximately 75 km west of the Shetland Isles in 459 ft of water. Because of its size and complexity, it is being developed in phases.

Clair Ridge, in UKCS Block 206/8, lies to the northeast of Clair Phase 1 and will be tapped with a pair of bridge-linked platforms–a drilling and production (DP) facilities platform and an accommodation and utilities (QU) platform. The new platforms have a 40-year design life and will require a total capital investment of about GBP 4.5 billion (USD 7.16 billion).

Read the entire article in the December 2011 issue of JPT.

torp_70

Can Geoscientists Resolve the CCS Paradox?

International energy and climate organizations have found carbon capture and storage (CCS) to be a promising technology to resolve the squeeze between fast-growing global energy needs and global warming. Even environmental organizations say that making our energy use more efficient and building enough new renewable energy capacity takes too long. We need to get the CCS working to curb the growing greenhouse gas emissions if too large a climate change is to be avoided.

CCS consists of three major interdependent steps:

  • Capture the carbon, CO2 out of flue gases, either from the stack of a power plant or the blast furnace top gas in iron making.
  • Transport it by pipeline or ship it underground.
  • Safely keep it in a storage site for thousands of years.

The technology for each of these steps has been used for decades in the industry, mostly in oil and gas. The important change is the scale–from about 100,000 to 1 million metric tons per year in the past. Today, we see the need for handling 10 million tons in each installation and for perhaps several thousand installations. The amount of CO2 produced from one power station varies from 2 million to 10 million tons; a modern iron-making blast furnace emits up to 10 million tons per year. The costs of the technologies for a large-scale CO2 handling chain are estimated to be split roughly 75%-10%-15% for capture-transport-storage.

Read the entire article in the December 2011 JPT.

Tore A. Torp is adviser for CO2 storage at Statoil, leading the storage part of Statoil’s research and development program (R&D) on CO2 capture and storage. He joined Statoil in 1984 from the steel industry. Between 1984 and 1996, he led large international R&D cooperation projects developing complex offshore field technologies. Since 1997, he has been project manager of Statoil CO2 storage R&D projects. He was vice chairman of the CSLF Technical Group, and was a lead author of the IPCC Special Report on Carbon Dioxide Capture and Storage. He received a PhD in material sciences from Norwegian University of Science and Technology.

martyn_fear_70

Bit Technology and Bottomhole Assemblies

The last decade has seen significant change in many areas of the drilling business, particularly with bits and bottomhole assemblies. Rising drilling costs, more-complex and -demanding drilling environments, and the ever-present stimulus of provider competition are continuing to drive improved understanding and decision making in this area. The days when bits were seen as simple commodities, with their leverage on well time and cost unrecognized, are fading. And this is long overdue.

Particularly encouraging is the growing use of field-behavior modeling of the bit and drillstring under realistic conditions, and the development of knowledge- based tool-selection techniques, refined by an intensive study of field data. The migration toward deeper or more-tortuous well designs, often accompanied by simultaneous drilling and hole opening in regions in which vibration effects are prolific and are more punishing, is leading to more understanding and rigor. These are admirable trends that more-traditional operations can and should capitalize on, and sometimes are.

My learned colleague Graham Mensa-Wilmot wrote of these trends a year ago in this feature, correctly pointing out to us that “We have the key, let’s open the door.” Perhaps we can claim to have done so with some challenges and in some geographical areas (e.g., vibration diagnosis and mitigation in deepwater Gulf of Mexico operations). However, with other equally important challenges (quantitative optimizing of the rate of penetration comes to mind), fundamental understanding and rigorous methods are not so widespread; we are still operating with “pockets of excellence.” So, it is appropriate to lay another challenge to those managing drilling operations and providing drilling services–if your teams are relying on a fuzzy definition of downhole processes or on trial and error to deliver drilling performance, it is time to modernize–let’s have the current pockets of excellence show the rest of us the way.

Read the paper synopses in the December 2011 issue of JPT.

Martyn Fear, SPE, is General Manager of Drilling & Completions for Husky Energy’s Atlantic Region, Canada. He has more than 25 years’ experience in drilling optimization and operations management across a wide variety of international locations. Fear serves on the JPT Editorial Committee. He earned a BSc (Honors) degree in geological sciences from the University of Birmingham, England.

hisham_saadawi_70

Production Facilities

Every year, SPE organizes more than 30 conferences worldwide. Critical issues of current interest to the oil industry are reflected in the SPE papers presented at these conferences. When selecting papers for this feature, I was not surprised that many papers deal with topics related to safety in facilities design and to asset integrity.

With recent publicized accidents and the industry’s continuing concern about its public image, operating companies are focusing on process safety and improving asset integrity, and are addressing these issues early in facilities design. Indeed, it can be argued that enhancing safety performance and dealing with the increased environmental risks remain the key challenges facing the industry today. Some concepts relevant to these topics are briefly outlined.

Asset integrity can be defined as the ability of the asset to perform its required function effectively and efficiently while managing health, safety, and the environment. In this context, asset integrity refers to hydrocarbon systems and includes support systems and infrastructure, such as platform structures.

Critical safety elements are those systems and equipment that prevent, control, or mitigate major accidents. They include elements such as pressure-relief valves, shutdown systems, fire- and gas-detection systems, and firefighting equipment.

Safety instrumented systems (SISs)—since its publication in 2003, the International Electrotechnical Commission (IEC) 61511 standard is becoming the basis for the specifications and implementation of SISs in the oil industry. Initially, the industry was relatively slow to adopt this standard. A dilemma facing operating companies is what to do about the existing shutdown safety systems that were installed before 2003 and that are not in compliance with IEC 61511.

Papers selected for this feature along with those recommended for additional reading highlight industry progress in these issues. I hope that they will be of interest to you.

Read the paper synopses in the December 2011 issue of JPT.

Hisham Saadawi, SPE, is Vice President (Engineering) for Abu Dhabi Company for Onshore Oil Operations (ADCO). He has more than 30 years’ experience in the design, construction, startup, and operation of oil- and gas-processing facilities. Saadawi’s current areas of interest include multiphase pumping, CO2 enhanced oil recovery, technical safety, as well as training and development. He is a recipient of the 2011 SPE Regional Projects, Facilities, and Construction Award. Saadawi is a 2010-2011 SPE Distinguished Lecturer and an SPE course instructor. He has served on several committees and subcommittees of SPE conferences and workshops, and he serves on the JPT Editorial Committee. Saadawi holds a PhD degree in mechanical engineering from the University of Manchester, UK, and is a Chartered Engineer in the UK.

delores_hinkle_70

Reserves/Asset Management

As a member of the JPT Editorial Committee, I am privileged to review papers presented at SPE events during the last year in the area of Reserves and Asset Management. I am always impressed by the highly skilled, innovative members of our Society who address the constant change in our industry in these papers.

Recently, many of the reserves papers have focused on changes in reserves and resource estimation resulting from the introduction of the Petroleum Resource Management System (PRMS) and the US Securities and Exchange Commission’s (SEC’s) Modernized Rules. Last year, many of the papers dealt with theoretical aspects of reserves estimation in unconventional plays. This year, most of the papers dealt with unconventional reserves, focusing on integration of theoretical and practical aspects of the engineering principles used to estimate reserves and resources. Several papers went full circle to address how issues around PRMS or the SEC’s Modernized Rules affect reserves and resource estimation in unconventional resources.

There was a similar shift in asset-management papers. Prior years were weighted heavily toward theoretical-optimization approaches, primarily focused on surface facilities. This year, there were many excellent papers addressing the practical application of those principles in technically challenging, high-cost environments. Integration of surface and subsurface components to improve efficiency was another recurring theme.

The fact that I could select only a few of the many outstanding papers that I reviewed highlights the importance of attending the venues at which these papers are presented. The insight provided during the presentation’s opportunity to ask questions yields valuable information that cannot be obtained by reading the paper alone. I selected the papers for highlighting and those recommended for additional reading with a view to the needs and interests of the membership of our global society. I hope I found something that will benefit each of you.

Read the paper synopses in the December 2011 issue of JPT.

Delores Hinkle, SPE, is Director, Corporate Reserves, for Marathon Oil Company. She has worked for Marathon for 25 years and has 35 years of experience in the oil industry, including positions at Atlantic Richfield Company and Sun. Hinkle has served as Chairperson of the SPE Oil and Gas Reserves Committee and served on the 2010 SPE Hydrocarbon Economics and Evaluation Symposium Steering Committee and the 2009 SPE Annual Technical Conference and Exhibition Management Program Subcommittee. She serves on the JPT Editorial Committee and on the SPE Gulf Coast Section Scholarship Committee. Hinkle earned a BS degree in petroleum engineering from the Missouri University of Science and Technology and an MBA degree from the University of Alaska, Anchorage.

spepo1111_70

SPE Production and Operations: featured papers

View the entire November 2011 issue.

140937-PA – Review of Electrical-Submersible-Pump Surging Correlation and Models
Jose Gamboa and Mauricio Prado, The University of Tulsa

142764-PA – Assessing Gas Lift Capability To Support Asset Design
James W. Hall, SPE, and Mubarak A.M. Jaralla, Qatar Petroleum

144573-PA – World’s Deepest Through-Tubing Electrical Submersible Pumps
J.Y. Julian, SPE, BP; J.C. Patterson, SPE, ConocoPhillips; and B.E. Yingst, SPE, and W.R. Dinkins, SPE, Baker Hughes

140228-PA – Case History: Lessons Learned From Retrieval of Coiled Tubing Stuck by Massive Hydrate Plug When Well Testing in an Ultradeepwater Gas Well in Mexico
Victor Vallejo Arrieta, Aciel Olivares Torralba, Pablo Crespo Hernandez, and Eduardo Rafael Román García, PEMEX; and Claudio Tigre Maia and Michael Guajardo, Halliburton

134483-PA – New Perspective on Gas-Well Liquid Loading and Unloading
C.A.M. Veeken, SPE, NAM, and S.P.C. Belfroid, SPE, TNO

speem1110_70

SPE Economics & Management: October 2011

View the October 2011 issue of SPE Economics and Management.

133044-PA – Valuation of Swing Contracts by Least-Squares Monte Carlo Simulation
B.J.A. Willigers, SPE, Palantir Economic Solutions, S.H. Begg, SPE, University of Adelaide, and R.B. Bratvold, SPE, University of Stavanger

147910-PA – Optimization of Equity Redeterminations Through Fit-for-Purpose Evaluation Procedures
Paul F. Worthington, SPE, Gaffney, Cline & Associates

125178-PA – Improving Allocation and Hydrocarbon Accounting Accuracy Using New Techniques
R. Cramer and D. Schotanus, Shell Global Solutions; K. Ibrahim, Brune Shell Petroleum; and N. Colbeck, Hess Corporation

146530-PA – Demonstrating Reasonable Certainty Under Principles-Based Oil and Gas Reserves Regulations
R.E. Sidle, SPE, Texas A&M University, and W. John Lee, SPE, University of Houston

154056-PA – Unconventional-Natural-Gas Business: TSR Benchmark and Recommendations for Prudent Management of Shareholder Value
Ruud Weijermars, Delft University of Technology, and Steve Watson, Ashridge Business School