In 2010, natural-gas reserves were approximately equivalent to 75% of the oil reserves (including oil sands). Unconventional gas sources continue to make up an increasingly important part of the natural-gas supply, particularly shale gas and coal- bed methane (CBM), which contribute approximately 40% to US natural-gas reserves.

Generally, very remote offshore gas reserves cannot be exploited economically by use of fixed subsea pipelines that tend to link the field with a specific geographical market. Operators can maximize market reach through natural-gas liquefaction and improved marine liquefied-natural-gas (LNG) tankers. For ultimate flexibility, four floating LNG-production facilities are predicted to come on stream within this decade.

Commercial exploitation of the known massive hydrate reserves probably is some time off; however, the chemistry research involved in hydrate management for current natural-gas production may accelerate progress in that area. Hydraulic-water reuse is key to the future of the CBM and shale-gas industries.

There are many opportunities to learn about and share natural-gas technologies. An SPE workshop, “Reducing Environmental Impact of Unconventional Resources Development,” will take place in San Antonio, Texas, 23–25 April 2012. A joint SPE/ SEG workshop, “Injection Induced Seismicity,” will be held in Broomfield, Colora- do, 12–14 September 2012. There will be an SPE “Tight Gas” workshop in Adelaide, Australia, 10–13 June 2012, and the SPE Unconventional Reservoir Technical Interest Group (TIG) provides a useful information exchange, as does the Gas Technology TIG. The 2013 SPE Unconventional Gas Conference and Exhibition will be held in Muscat, Oman, 28–30 January. The 2013 SPE International Symposium on Oilfield Chemis- try to be held in The Woodlands, Texas, 9–13 April, includes topics on gas-processing chemical applications.

Acid-gas (CO2 and H2S) removal from natural gas and sequestration/recovery/ disposal technologies are very important in exploitation of poorer-quality gas finds. Much work continues in this area, and very large acid-gas-removal units are in opera- tion or are planned for the Arabian Gulf region.

The future of natural-gas processing and handling has never looked better.

Read the paper synopses in the April 2012 issue of JPT.

George Hobbs, SPE, is Director, Strategic Chemistry Pty. Ltd., a production consulting group. Previously, he was with Nalco/Exxon, Exxon Chemical Energy Chemicals, NL Treating Chemicals, Baroid, British Gas, Kemira Oy, and Blue Circle Cement. Hobbs has 34 years’ experience in solving oil and gas and geothermal drilling and production problems in Europe, the USA, North Africa, the Middle East, the Far East, and Australasia. He studied at the University of Glasgow, Brunel University, and the University of Adelaide, earning a BS degree in applied chemistry and a Graduate Diploma in business. Hobbs is past Chairperson of the SPE Gas Technology TIG and served on the SPE TIG Advisory Committee. He serves on the SPE Production and Operations Advisory Committee and the JPT Editorial Committee. Hobbs is a Certified Corrosion Specialist and Chemical Treatment Specialist.