Bob Carpenter

Well Construction

The number and economic contribution of unconventional (tight gas/shale and steamflood) wells continued to increase rapidly in 2011, as did the participation of major operators. That increased industry focus was evident again in the distribution of papers. Also, there were more papers relating advances in plug-and-abandonment, Arctic, high-pressure/high-temperature (HP/HT), and carbon-capture technologies.

Manny Gonzalez, Chevron Energy Technology Company’s Alliance Manager, noted that the huge interest in shale-formation completions calls for efficient controlled fracturing technology to ensure economic viability and an environmentally responsible well completion. SPE 152185 outlines a direct comparison of openhole vs. cased-hole fracturing in a tight gas reservoir. The presented results are surprising, and the effects on incremental production, fracture height, and fracture half-length are significant—a good read.

Operators have been plugging nonproductive and storm-damaged wells at an increasing rate, and effective abandonment operations can prove costly and challenging. SPE 148640 relates a novel and well-detailed approach to a more efficient plug-and-abandon process and to the process of confirming plug integrity across an uncemented section of annulus. Check it out.

Industry emphasis on long-term well reliability has continued to increase, especially for steamflood projects. SPE 150022 details a very thorough look into the many design and operational factors that affect well reliability in a high-temperature (285°C) steamflood. While only briefly mentioned, the authors undertook controlling the rate of temperature change, and thus controlling temperature disparity (∆T) between casing, cement sheath, and formation during injection cycles. Controlling injection events can have a strong effect on the reliability of a steamflood well or even a deepwater or HP/HT well. This is the first field effort at controlling such events that I recall.

Read the paper synopses in the May 2012 issue of JPT.

Bob Carpenter, SPE, Research Consultant with Chevron Exploration and Technology Company’s Cement Team, has 33 years’ experience in field operations, technical support, and R&D. Previously, he was with Arco Exploration and Production Technology and BJ Services’ Technology Center. Carpenter serves on the SPE Drilling and Completions Advisory Committee, along with other industry groups. He has authored or coauthored 15 SPE papers and several JPT articles and has been granted 23 US patents. Carpenter’s areas of expertise include technical support and R&D of all areas of primary and remedial cementing. He also has extensive expertise in coiled-tubing cementing, spacer-fluid development, and remediation of sustained casing pressure. Carpenter serves on the JPT Editorial Committee.

Alvaro Felippe Negrão

Multilateral/Extended Reach

Mitigating Risks in Development Projects

Our industry has been involved in incidents that demonstrated the need of a new approach for evaluating and mitigating the risks in well construction.

The “what’s worked well in the past” conservative approach is not possible anymore, in face of the damaged trust of the public about upstream activity. Though the criticism soars against exploration and production activities, the industry has allocated substantial investments in research for new technologies aimed to preclude risk events of recent years. New procedures and technologies, in addition to existing ones, will be deployed in the near future to eliminate blowouts or underground contamination from upstream operations.

The initial results can be seen in field operations such as the application of managed-pressure drilling (MPD) for offshore and onshore, the use of long horizontals or extended reach in the shale plays, and new fluids and techniques for fracture treatments that minimize the amount of water required in such operations.

The effects of drilling operations in the shale plays of the USA are clear, but recent research will result in a consistent reduction of environmental damage. Research is minimizing fluid losses into reservoirs and helping with mitigation of well-control situations when applying the MPD technique.

The use of nanotechnology will provide fluids that improve fracture treatments through the control of fluid losses, with a subsequent reduction in the amount of fresh water required. Today, an average fracture treatment in the Barnett shale requires 235,000 bbl of water. These treatments are essential to reduce the number of wells and to improve the performance of the fracture treatments for environmental-impact reduction.

The use of extended-reach drilling or long horizontal wells, combined with multilaterals, will reduce the number of wells without impairing expected production. This will mitigate the effect on aquifers or shallow formations with a reduction in surface infrastructure. Some of the papers featured or listed for reading show advances in the technology of extended-reach and multilateral wells that will help achieve such objectives.

Finally, the combined use of extended-reach and multilateral wells, nanotechnology fluids, and MPD will result in a more environmentally-friendly operation with a cost-effective development plan, which is essential for improving the industry’s image.

Read the paper synopses in the May 2012 issue of JPT.

Alvaro Felippe Negrão, SPE, is Senior Advisor for Woodside Energy USA. Previously, he was with Repsol, Halliburton, and Petrobras. In his 33-year career, Negrão has been involved in drilling and completion engineering and operations for wells in deepwater Gulf of Mexico, Brazil, the North Sea, West Africa, the Mediterranean, the Caribbean, and North/South America and in new-ventures evaluation and asset management. He has served on several SPE committees and currently serves on the JPT Editorial Committee and serves as vice chairperson for the SPE Subcommittee for the Offshore Technology Conference. Negrão holds a BS degree in civil engineering from the Universidade de São Paulo in Brazil, an MS degree in petroleum engineering from the Universidade de Campinas in Brazil, and a PhD degree in petroleum engineering from Louisiana State University.

hudson

Intelligent Fields Technology

At the 2011 SPE Annual Technical Conference and Exhibition (ATCE) in Denver, a panel discussed the question, “10 Years of Digital Energy: What Have We Learned?” Those leading the discussion, mostly experts from major operators and service companies, centered on two main themes:

  • Consolidating and Institutionalizing Successful Patterns
  • Handling of Large, Disparate Data Sets

As an industry, we clearly have moved beyond the heady first years of the digital transformation, where the anticipation from many was that within a few years we would have a consolidated software solution spanning the scope of E&P workflows. While the stories told by such a panel naturally focused more on success cases (particularly for large greenfield applications), what emerges is evidence of large-scale benefits when a company invests in repeating successful patterns at its scale of operation—this is found to be true for both operators and service companies. The clearest examples of such success were on the fundamental aspects of data quality, exception- based surveillance, standardization of human workflows, and large-scale applications of focused software solutions, often having required an investment cycle of at least 5 years. Focusing on the scaling of fundamental aspects to broad application provided significant return while managing risk, with the result of sustaining those programs that delivered benefits. If the human workflow failed to rely on any new technology deployment, any gains found in the first year or two following the deployment were not sustained. So, a simple, “fast follower” approach is unlikely to be successful, unless the follower can adapt the leader’s success to their own culture and processes well.

Of course, the challenges are becoming more complex. Scaling successes from large, greenfield applications (in which initiatives may be justified easily) to brownfields, “difficult oil and gas,” and IOR/EOR will require us to focus more on the “big- data” challenge and the efficient application of qualified data to improve reservoir management through better daily decisions and more-accurate forecasting. In many cases, the problem has moved from a lack of data to an inability to contextualize the available data quickly into a particular decision process. As a result, information relevant to a decision may be available to some extent within the organization, but not easily applied to the decision because it first must be found and qualified, often through an undocumented process, before it can be used.

Once organizations can depend on a service level for qualified data, they can begin to exploit the data by use of established patterns, such as those outlined by the ATCE panelists, and emerging patterns, as illustrated by the papers in this feature.

Read the paper synopses in the May 2012 issue of JPT.

John Hudson, SPE, Senior Production Engineer, Shell, has more than 25 years’ experience in multiphase-flow research, flow-assurance design of deepwater production systems, and development of model-based real-time operations- decision systems. Since joining Shell, he has held technical and managerial positions in Europe and North America, including leading a team that developed a model-based, cloud computing solution that was deployed globally to gas plants with a total production capacity in excess of 10 Bcf/D. Hudson currently provides production-engineering support for the development of a next-generation simulator. He holds a PhD degree in chemical engineering from the University of Illinois. Hudson serves on the JPT Editorial Committee.

braile

Deepwater Projects

No word defines deepwater projects better than “innovation,” and on 25 February 2012, one of the most innovative field-development projects came on stream: Cas- cade and Chinook (C&C) in the US Gulf of Mexico (GOM). One well is producing from Cascade to the first floating production, storage, and offloading (FPSO) vessel in the US GOM. The project brings several firsts and innovations that will be available to the entire oil industry in the near future. I would like to call attention to some of those innovations. First, the FPSO uses a detachable buoy that allows early installation of the buoy and all umbilicals before arrival of the FPSO. This feature will allow the FPSO to disconnect and sail away from hurricanes, avoiding damages to the facilities. C&C also presents the first freestanding riser in the US GOM. Subsea boosting will increase production and reduce workover costs. These examples are just a few that show inno- vation applied to a deepwater development. I believe strongly that C&C will lead the way for future development of Lower Tertiary plays in the GOM.

I selected one paper for this feature that describes the planning, logistics, and technology of the two largest deepwater high-pressure perforation jobs executed suc- cessfully in the GOM; certainly, this provides very interesting reading if your company is in the Tertiary play or is planning to be.

Drilling management in deep water has always been a great challenge because of several constraints, including high cost; well engineering (exploratory wells); logistics (remote locations); health, safety, and environmental (local and international laws); licenses; and personnel management. One of the papers presents a very objective and clear explanation of the well-management process, describing the design methodolo- gy and the well-execution procedures used by Petrobras International in a remote and challenging area. This methodology can be applied to any well and could bring huge benefits for any drilling operation.

Are you lost in a “cloud” of drilling data? You are not the only one! Drilling-data management is one of the biggest challenges in our industry today. One of the feature papers presents solutions, gives examples, and shows the benefits of a correct use of drilling data.

Enjoy your reading.

Read the paper synopses in the May 2012 issue of JPT.

Jacques Braile Saliés, SPE, is the Drilling Manager of Queiroz
Galvão E&P. His 30-year career at Petrobras included various engineering and management positions in E&P: coordination of the Petrobras Technological Program on Ultradeepwater Exploitation Systems— PROCAP 3000, drilling manager for Petrobras America, and well operation manager for Petrobras International. Saliés holds a BS degree in mechanical engineering from the Military Institute of Engineering, Brazil, an MS degree in petroleum engineering from the Federal University of Ouro Petro, Brazil; and a PhD degree in petroleum engineering from the University of Tulsa. He has authored or coauthored several papers on drilling and subsea technology. Saliés served several terms on the SPE Board of Directors for the Brazil Section and serves on the JPT Editorial Committee.

speem1110_70

SPE Economics & Management Volume 4, Number 2 Available Online

i-field™ Programs Enable Operational Excellence in a Challenging Environment–Pushing the Limits of Large Data Transfer for Real-Time Monitoring and Surveillance Operations in San Joaquin Valley.
Andrei Popa, SPE, and Steve Cassidy, SPE, Chevron Corporation

Proactive Indicators To Control Risks in Operations of Oil and Gas Fields
S.O. Johnsen, Norwegian University of Science and Technology and SINTEF, E. Okstad, SINTEF, Andreas L. Aas, JBV, and T. Skramstad, Norwegian University of Science and Technology

Intelligent Exploration and Appraisal Program for a Multiprospect Development
Pierre Delfiner, SPE, PetroDecisions

Regulated Self-Regulation or External Control? Effects of Different Legislative Approaches in the Petroleum Sector in Norway and Brazil
Celma Regina Hellebust, Hellebust International Consultant, and Geir Sverre Braut, SPE, Norwegian Board of Health Supervision and Stord/Haugesund University College

Using the SPE/WPC/AAPG/SPEE/SEG PRMS To Evaluate Unconventional Resources
Phillip Chan, SPE, Chance Petroleum Limited; John R. Etherington, SPE, PRA International; and Roberto Aguilera, SPE, Schulich School of Engineering, University of Calgary

For the latest content, visit http://www.spe.org/go/speem/