Mitigating Risks in Development Projects

Our industry has been involved in incidents that demonstrated the need of a new approach for evaluating and mitigating the risks in well construction.

The “what’s worked well in the past” conservative approach is not possible anymore, in face of the damaged trust of the public about upstream activity. Though the criticism soars against exploration and production activities, the industry has allocated substantial investments in research for new technologies aimed to preclude risk events of recent years. New procedures and technologies, in addition to existing ones, will be deployed in the near future to eliminate blowouts or underground contamination from upstream operations.

The initial results can be seen in field operations such as the application of managed-pressure drilling (MPD) for offshore and onshore, the use of long horizontals or extended reach in the shale plays, and new fluids and techniques for fracture treatments that minimize the amount of water required in such operations.

The effects of drilling operations in the shale plays of the USA are clear, but recent research will result in a consistent reduction of environmental damage. Research is minimizing fluid losses into reservoirs and helping with mitigation of well-control situations when applying the MPD technique.

The use of nanotechnology will provide fluids that improve fracture treatments through the control of fluid losses, with a subsequent reduction in the amount of fresh water required. Today, an average fracture treatment in the Barnett shale requires 235,000 bbl of water. These treatments are essential to reduce the number of wells and to improve the performance of the fracture treatments for environmental-impact reduction.

The use of extended-reach drilling or long horizontal wells, combined with multilaterals, will reduce the number of wells without impairing expected production. This will mitigate the effect on aquifers or shallow formations with a reduction in surface infrastructure. Some of the papers featured or listed for reading show advances in the technology of extended-reach and multilateral wells that will help achieve such objectives.

Finally, the combined use of extended-reach and multilateral wells, nanotechnology fluids, and MPD will result in a more environmentally-friendly operation with a cost-effective development plan, which is essential for improving the industry’s image.

Read the paper synopses in the May 2012 issue of JPT.

Alvaro Felippe Negrão, SPE, is Senior Advisor for Woodside Energy USA. Previously, he was with Repsol, Halliburton, and Petrobras. In his 33-year career, Negrão has been involved in drilling and completion engineering and operations for wells in deepwater Gulf of Mexico, Brazil, the North Sea, West Africa, the Mediterranean, the Caribbean, and North/South America and in new-ventures evaluation and asset management. He has served on several SPE committees and currently serves on the JPT Editorial Committee and serves as vice chairperson for the SPE Subcommittee for the Offshore Technology Conference. Negrão holds a BS degree in civil engineering from the Universidade de São Paulo in Brazil, an MS degree in petroleum engineering from the Universidade de Campinas in Brazil, and a PhD degree in petroleum engineering from Louisiana State University.