This year, there were approximately 200 papers on simulation to select from—and that is after a separate feature on history matching. So, the discipline continues to be active. A noticeable feature is the growing number of simulation  papers that use different technology, in the broadest sense of the term—for example, using concepts from signal  processing and electrical engineering to model subsurface flow or related phenomena. However, the dominant  technology remains finite different representations of Darcy’s law, conservation of mass, and a fluid model.

What is also heartening is the fact that all significant papers on case studies start with descriptions of the geology and  often include detailed description of 3D geological modeling. Any simulation that is based on a physical model of the  field must surely depend on the quality of the geological model used as input; yet, not that long ago, it was normal to pay  only scant regard to the geology when constructing a model and even less when altering it during history matching.

Recent discussion within the SPE Simulation Technical Interest Group has raised the issue of pseudorelative  permeabilities, with some arguing that they are obsolete and others strongly disputing the claim. Sadly, there were no  papers on the subject that I could include in this feature. The relative permeability curve is where engineering meets  geology; anyone involved in complex projects—and who of us is not— knows that it is at the interfaces that complexities  arise and are too often ignored. The same is true in our models, so surely relative permeabilities and their multiphase upscaling are topics worth renewed investigation.

All three of the case studies I have selected, which are all from very different settings and parts of the world, were studies  directed toward making tangible decisions (e.g., selecting well locations and completion intervals). This  highlights once again that good simulation studies are directed toward decision making; having a clear sight of the  purpose of the work improves the quality of the work and, thus, of the ultimate decision. The converse is also true.

View the paper synopses in the July 2012 issue of JPT.

Martin Crick, SPE, is chief petroleum engineer with Tullow Oil, responsible for all aspects of reservoir and production engineering in the group worldwide. Previously a principal reservoir engineer with  Schlumberger, he was responsible for the design of the reservoir-engineering features in Petrel and, most  recently, for a review of well test interpretation workflows within Schlumberger. Crick’s experience over 24  years in the industry has focused on reservoir engineering and, especially, simulation in support of field development planning initially with AEA Technology on contract to the UK government on a wide range of North Sea  fields and then with Texaco on Erskine, the first high-pressure/high-temperature field on production in the UK North Sea,  and on Karachaganak, the giant gas/condensate field in Kazakhstan. He holds a BS degree in physics from the University of Bristol.