Category Archives: Drilling and Completions


Trends in Monitoring: How to Use Real -Time Data Effectively

David Pritchard, Successful Energy Practices International, Jesse Roye, Digital Oilfield Solutions, and J.C. Cunha, Ecopetrol America

Real-time data is not about well control, it is about well control avoidance. Recent catastrophic blowouts have underscored the value of real-time data and, more importantly, they have also underscored the value of having the right kind of experience to understand well data interpretation in real time.

What is the well telling us? How do we use real-time data to ensure a stable wellbore? Real-time monitoring integrated with rigorous total well control analysis is required to embrace and achieve continuous improvement and ensure the safest possible environment. Next generation monitoring requires a step change that includes hazards avoidance as a precursor to drilling optimization.

Real-time data can be used effectively to avoid, minimize, and better manage drilling and completion operations. They can also provide the foundational support to improve training in the industry as well as develop hands-on simulators for hazards avoidance.

Read the entire article in the January 2012 issue of JPT.


Well Control

Procrastination: Is it too many things going on at once that causes us to rush to meet deadlines, or makes us forget to complete important tasks in a timely manner, or even try to do too many things at once, resulting in nothing getting done correctly? You probably are wondering how this relates to well control. In our work schedules, we all are faced with situations in which we are required to complete multiple concurrent tasks. This often is the case when we rush to finish drilling a problem well so that we can get the drilling rig moved to the next location and turn this well over to the completions team. Multiple activities must be completed concurrently that, individually, are relatively simple, but each activity requires the attention of the driller, tool pusher, company man, and others on the crew. When one of these tasks begins to go awry, our attention may be on something else, and we can miss important warnings until it is too late to avoid a disaster.

What is the point? Once again, I will use the Macondo blowout as an example. To leave the well in a position to be completed by another crew, mud had to be removed from the riser and top of the well and be replaced with seawater. A spacer was pumped between the mud and seawater to prevent mixing of the seawater and mud. This is a simple enough operation, it seems, but when seawater is being pumped into the well, mud has to be pumped onto a workboat to prevent the pits from running over, and the spacer is being dumped overboard; keeping track of how much of each fluid is going where becomes a daunting task. Could this have been a contributing factor in not recognizing the beginning of the kick?

Jerome Schubert, SPE, is an assistant professor in the Harold Vance Department of Petroleum Engineering at Texas A&M University. He has more than 30 years’ experience with Pennzoil, Enron Oil and Gas, the University of Houston– Victoria Petroleum Training Institute, and Texas A&M University. Schubert earned BS, ME, and PhD degrees in petroleum engineering from Texas A&M University. He is a coauthor of Managed Pressure Drilling and the author of more than 35 technical papers. Schubert serves on the JPT Editorial Committee and has served on several SPE committees and as a Technical Editor for SPE Drilling & Completion. He serves as Faculty Advisor for Pi Epsilon Tau. Schubert is a registered professional engineer in Texas.


SPE Drilling & Completion – featured papers

View the entire contents of the December 2011 issue.

Completion Design and Execution

151970-PA – Completing the First Big Bore Gas Wells in Lunskoye–a Case History
C. Zerbst, SPE, and J. Webers, SPE, Sakhalin Energy Investment Company Limited

134326-PA – Numerical Simulations of Sand-Screen Performance in Standalone Applications
Somnath Mondal, SPE, and Mukul M. Sharma, SPE, University of Texas at Austin; and Rajesh A. Chanpura, SPE, Mehmet Parlar, SPE, and Joseph A. Ayoub, SPE, Schlumberger

Drilling and Completion Fluids

140868-PA – Development of Water-Based Drilling Fluids Customized for Shale Reservoirs
J.P. Deville, B. Fritz, and M. Jarrett, Halliburton

135166-PA – Protecting the Reservoir With Surfactant Micellar Drill-In Fluids in Carbonate-Containing Formations
Tianping Huang, SPE, James B. Crews, SPE, and David E. Clark, SPE, Baker Hughes

141447-PA – Stabilizing Viscoelastic Surfactants in High-Density Brines
R. van Zanten, SPE, Halliburton

130579-PA – Laminar and Turbulent Friction Factors for Annular Flow of Drag-Reducing Polymer Solutions in Coiled-Tubing Operations
Chinenye C. Ogugbue, SPE, and Subhash N. Shah, SPE, Well Construction Technology Center, University of Oklahoma


Bit Technology and Bottomhole Assemblies

The last decade has seen significant change in many areas of the drilling business, particularly with bits and bottomhole assemblies. Rising drilling costs, more-complex and -demanding drilling environments, and the ever-present stimulus of provider competition are continuing to drive improved understanding and decision making in this area. The days when bits were seen as simple commodities, with their leverage on well time and cost unrecognized, are fading. And this is long overdue.

Particularly encouraging is the growing use of field-behavior modeling of the bit and drillstring under realistic conditions, and the development of knowledge- based tool-selection techniques, refined by an intensive study of field data. The migration toward deeper or more-tortuous well designs, often accompanied by simultaneous drilling and hole opening in regions in which vibration effects are prolific and are more punishing, is leading to more understanding and rigor. These are admirable trends that more-traditional operations can and should capitalize on, and sometimes are.

My learned colleague Graham Mensa-Wilmot wrote of these trends a year ago in this feature, correctly pointing out to us that “We have the key, let’s open the door.” Perhaps we can claim to have done so with some challenges and in some geographical areas (e.g., vibration diagnosis and mitigation in deepwater Gulf of Mexico operations). However, with other equally important challenges (quantitative optimizing of the rate of penetration comes to mind), fundamental understanding and rigorous methods are not so widespread; we are still operating with “pockets of excellence.” So, it is appropriate to lay another challenge to those managing drilling operations and providing drilling services–if your teams are relying on a fuzzy definition of downhole processes or on trial and error to deliver drilling performance, it is time to modernize–let’s have the current pockets of excellence show the rest of us the way.

Read the paper synopses in the December 2011 issue of JPT.

Martyn Fear, SPE, is General Manager of Drilling & Completions for Husky Energy’s Atlantic Region, Canada. He has more than 25 years’ experience in drilling optimization and operations management across a wide variety of international locations. Fear serves on the JPT Editorial Committee. He earned a BSc (Honors) degree in geological sciences from the University of Birmingham, England.


SPE Drilling & Completion: featured papers

View the entire September 2011 issue of SPE Drilling & Completion

134563-PA – Continuing Application of Torque-Position Assembly Technology for API Connections
James P. Powers, SPE, ExxonMobil Development Company; and Michael S. Chelf, SPE, ExxonMobil Upstream Research Company

135462-PA – A Major Advancement in Expandable Connection Performance, Enabling Reliable Gastight Expandable Connections
Richard DeLange, SPE, Raju Gandikota, and Scott Osburn, SPE, Weatherford International

119468-PA – New Standard for Evaluating Casing Connections for Thermal-Well Applications
Jaroslaw Nowinka, SPE, and Dan Dall’Acqua, SPE, Noetic Engineering 2008

139829-PA – Casing Design With Flowing Fluids
Robert F. Mitchell, Halliburton

139824-PA – Lateral Buckling–The Key to Lockup
Robert F. Mitchell, Halliburton, and Tore Weltzin, Statoil




Horizontal and Complex Trajectory Wells

Geometrically complex and horizontal wells are constructed to deliver additional production with fewer environmental effects. The continuous success with which we are able to drill, complete, operate, and maintain wells having demanding profiles positioned for stronger reservoir performance is the result of service companies, drilling companies, operators, and technical institutions developing ever-more-advanced and -reliable technology. As new technologies are put to work, new techniques are developed to reduce operational risk, increase payback, and improve efficiency, thereby pushing the boundaries of what previously was considered technically improbable to achieve or uneconomical. As a result, higher-value wells are constructed. Development of these new technologies and techniques continues, but none of this is possible without technically competent experienced people.

Well-construction activity has ramped up over the past 2 years. This activity ramp is occurring simultaneously in established areas and “frontier” locations that are remote from upstream infrastructure or are lacking local expertise. As a result, it is challenging to ensure that complex wells gain the focus of the most-experienced technical personnel to deliver acceptable performance consistently. While remote operating centers alleviate some of this challenge, the need for technical training and competency development probably has never been greater than it is today. However, the opportunities to achieve this have never been greater.

Every well we construct and operate presents on-the-job-training and competency-development opportunities. We should make greater efforts in identifying these opportunities and in committing to exploiting them. This should be more widely recognized at the planning phase by documenting training opportunities as key well objectives. Achieving these objectives would enhance the value delivered from each well.

It is only by focusing on development of people, existing and new to our industry, that the boundaries of horizontal and complex wells will continue to expand, adding production with fewer environmental effects. This must persist irrespective of the business cycle because while there are efficient methods of attaining technical proficiency by commitment to well-structured programs, there are no shortcuts.

Read the paper synopses in the November 2011 issue of JPT.

Jon Ruszka, SPE, is Field Career Development Manager, Baker Hughes Africa Region. He has more than 25 years’ industry experience in various technical, operational, and marketing positions, primarily focused on the application and advancement of directional-drilling technology and techniques. Ruszka earned a BSc Honours degree in aeronautical engineering from the University of Bristol and a post-graduate diploma with distinction in offshore engineering from Robert Gordon Institute of Technology, Aberdeen. He has authored and presented several SPE papers and serves on the IADC/SPE Drilling Conference & Exhibition Organizing Committee and the JPT Editorial Committee.


Drilling and Completion Fluids

When you take a look at the oil industry these days, what is the one thing you hear and read about the most? “Shale plays.” Operators are developing resources, purchasing acreage, and purchasing companies that have acreage in the USA and in countries around the world, now more than ever before.

For long-term economic stability of these projects, they need to be drilled as inexpensively and as fast as possible–basically, they need to be “factory-type wells.” The main fluid-related challenges associated with shale drilling are rate of penetration (ROP), shale stability, torque and drag, and waste management. Many of these wells are being drilled with nonaqueous fluids (NAFs) to meet these challenges, with the only real issue being waste management. However, there are technologies being used that reduce the amount of waste generated with NAFs, such as premium solids-control systems and thermal-desorption methods.

In an effort to eliminate NAF waste-management issues, drilling-fluids companies have developed fit-for-purpose water-based drilling fluids for each of the major shale plays. The shale regions around the world vary in depth, mineralogy, temperature, and other characteristics, and a single fluid formulation does not fit all circumstances. Each fluid is customized to the unique characteristics of a particular shale region. Fluids companies have specific products and chemistries that are designed for a specific type of shale and drilling operation.

As technological advances enable exploitation of shale resources around the world, the challenge will be to find the most-cost-effective solution. As always, the lowest overall well cost may not result from the lowest-cost-per-barrel drilling fluid. One has to take into account ROP, torque and drag, wellbore stability, and waste management when determining the most-cost-effective solution.

There were many good papers written this year, and I have tried to choose a variety of universal topics. Please take time to read them and the papers listed as additional reading.

Read the paper synopses in the November 2011 issue of JPT.

Brent Estes, SPE, is a Drilling Fluids Specialist for Chevron Energy Technology Company supporting worldwide drilling operations. Previously, he was with ExxonMobil and Baroid Drilling Fluids. Estes earned a BS degree in petroleum engineering from Texas A&M University. He has a broad background in all aspects of drilling and completion fluids, including fluids research and development and working as a drilling engineer. Estes has authored several SPE papers and serves on the JPT Editorial Committee.


Quantifying the Invisible: Getting a Handle on Methane’s Climate Impact

Robin Beckwith, Staff Writer JPT/JPT Online

Earlier this year, a Cornell University professor made quite a splash publishing a paper asserting that emissions from shale gas rivaled those from coal. A July 2011 study issued by the Post Carbon Institute underscored this conclusion. Not so, say five separate recent reports–from Carnegie Mellon University, IHS Cambridge Energy Research Associates (CERA), the US National Energy Technology Laboratory (NETL), Argonne Laboratory, and Deutsche Bank Climate Change Advisors (coauthored by individuals from Worldwatch Institute and ICF International). At heart are issues related to measuring and quantifying emissions of an odorless, colorless gas–methane (CH4)–considered the second-most prevalent long-lived greenhouse gas after carbon dioxide (CO2).

Read the full article in the November 2011 JPT.