SPE Technology Updates

Industry and Society news grouped by SPE technical discipline

NewIcon

New Technical Section and TIG: Petroleum Data Driven Analytics (PD2A)

Using data as the main building block of models is the new paradigm in science and technology. A new Technical Section and Technical Interest Group (TIG) has been formed to foster the application of data-driven modeling, data mining and predictive analytics research, development and practices in upstream oil and gas.

Join online communities of SPE members to:

  • Develop a strategy and plan to promote the use of artificial intelligence, supervised and unsupervised learning, and other techniques in field management as a complementary approach to traditional upstream workflows.
  • Develop and sustain a community of practice for sharing ideas and promoting the practice and application of artificial intelligence and petroleum analytics in upstream business.
  • Promote establishment of a new discipline, including curricula and training, to combine data mining and oilfield technologies.
  • Focus on promoting technology development and deployment to address key risks and opportunities in upstream oil and gas.

Join the Technical Section and Technical Interest Group today!

ogf_cover_april12

April Oil and Gas Facilities now available

The April issue of Oil and Gas Facilities features in-depth articles about decommissioning activities in the Gulf of Mexico and how a systems-wide engineering approach to facilities design helps in the planning for initial startup. View the Table of Contents to see the regular columns and peer-reviewed papers. Subscribers can view the entire issue. Learn more about Oil and Gas Facilities or view the entire first issue.

kleemeyer

Seismic Applications

Following an increased investment in advanced seismic solutions, we have
experienced some remarkable boundary shifts in seismic-data quality in recent years.
Significant improvements have been achieved in densely sampled wide-azimuth seismic
acquisition and in wave-equation-based imaging techniques, such as full-waveform
inversion and reverse time-migration, in processing. Also, emerging marine
broadband-seismic solutions promise a real step change in resolution, offering
unprecedented detail in subsurface interpretation and enhanced penetration of low
frequencies for deep imaging.

Massive changes are also happening in the amount of data being acquired,
leading to new challenges in processing and interpretation. The channel count for
onshore-acquisition systems continues to increase, and new records have been set in
the towing capacity of marine-seismic vessels. These continuing developments enable
efficient acquisition of larger and denser surveys with longer offsets and rich azimuth
data. However, these developments generally are also associated with an increased
footprint that must be managed both operationally and environmentally.

It is, therefore, evident that not all new techniques can be ported easily to all environments.
Adequate solutions must be chosen from the growing geophysical toolbox,
balancing technical aspects with operational constraints and business requirements.
Large-scale regional exploration surveys in environmentally sensitive or remote areas
can differ significantly from detailed surveys required for infill-drilling targets. Flexible
and scalable survey techniques are particularly important to enable smart data
acquisition in areas where access had been notoriously difficult because of environmental,
operational, or economic restrictions.

This seismic feature provides examples for ongoing boundary shifts in seismic
technologies complemented by a guide for the interpretation of microseismic data
and a pilot study about pushing time-lapse seismic monitoring toward carbonate reservoirs.
A common element of the documented successes is continued commitment to
and investment in technology and a close integration with business.

Read the paper synopses in the March 2012 issue of JPT.

Gerd Kleemeyer, SPE, leads the Integrated Geophysical Services team in Shell’s Global Solutions Upstream organization in Rijswijk, the Netherlands. During 17 years with Shell, he has worked on exploration and development projects in the Netherlands, Norway, the UK, and Russia, and as geophysical consultant for global new-venture exploration. Kleemeyer holds an MS degree from the Technical University of Clausthal, Germany, and he serves on the JPT Editorial Committee.

matthews

Heavy Oil

The rapid growth in interest and in development activities related to unconventional oil and gas resources, including heavy oil, is clearly evident throughout the industry. One outcome has been a tremendous increase in the number of SPE papers written this past year on various topics associated with development and recovery optimization of heavy-oil reservoirs. Another is that petroleum-engineering departments at many more universities worldwide are actively engaged in teaching courses and performing research related directly to viscous- and/or heavy-oil recovery.

One topic in particular has gained more attention: development and application of enhanced thermal-recovery methods that use various solvents as a means to improve recovery and to reduce operating costs significantly relative to conventional thermal projects. Continued knowledge development in this subject area through a combination of reservoir-scale physics and chemical-process analysis, simulation capability advancement, laboratory testing, and field-piloting work is needed to enable operators to design and implement these methods effectively and commercially, especially for viable development of thinner, lower-quality heavy-oil reservoirs. One synopsis paper and a reading paper were selected to provide further insights regarding the potential and the challenges associated with the use of solvent-recovery techniques in such applications.

The other papers were chosen to illustrate the variety and significance of the challenges operators may encounter in assessing and/or pursuing the development of heavy-oil reservoirs under different settings and conditions. These include various problems that had to be dealt with during testing of a heavy-oil well in an offshore location; the many planning issues, design tradeoffs, and performance considerations associated with the sequencing and conversion of a heavy-oil-field development from cold to hot production; the difficulties experienced in planning and conducting
pilot operations in a high-viscosity oil field overlain by thick permafrost in the Russian Arctic; and the ability to achieve adequate recovery with steaming of fractured carbonate reservoirs.

Recent literature also describes several interesting technology developments, modeling studies, and field-trial activities related to the use of in-situ combustion and electrical-heating methods as alternative heavy-oil-recovery techniques. Several additional papers present results from investigations of CO2 injection into heavyoil or bitumen reservoirs to achieve both improved oil recovery and greenhouse-gas sequestration, while many others describe new developments and/or field experiences involving waterflooding and polymer flooding of heavy-oil reservoirs. The many papers written on these topics can be sourced through OnePetro.

Read the paper synopses in the March 2012 issue of JPT.

Cam Matthews, SPE, is Director–New Technology Ventures for C-FER Technologies, organizing R&D programs related to production operations and drilling and completions. He holds five patents on drilling and production processes. Matthews earned BS and MSc degrees in civil engineering from the University of
Manitoba and the University of Alberta, respectively. He serves as a Director of the SPE R&D Technical Section, on two ad hoc SPE Board committees, and on the JPT Editorial Committee.