Frac Fluids on Organic Shales: What We Know, What We Don’t, and What Can We Do About It

George Waters, Schlumberger
Frac Fluids on Organic Shales: What We Know

First of All: Hydraulic fracturing with large volumes of water works!
Frac Fluids on Organic Shales: What We Know

Shales are Reactive

Introduction of fresh water brings the system into non-equilibrium:
- Fluid Imbibition and Leakoff
- Chemo – Mechanical Rock Alteration
- Salt Diffusion
- Mineral Dissolution and Reprecipitation
Frac Fluids on Organic Shales: What We Know

Frac fluid imbibes into rock matrix

Slide 4
Frac Fluids on Organic Shales: What We Know

Imbibition reduces matrix permeability (but it can recover with time)
Imbibition is a function of mineralogy
Imbibition alters the rock
Frac Fluids on Organic Shales: What We Know

Imbibition alters the rock

Eagle Ford Shale Creep

URTeC 167245

SPE 171569

Frac Fluids on Organic Shales, George Waters
Frac Fluids on Organic Shales: What We Know

Pore throats are small
- Fraction of a micron
Frac Fluids on Organic Shales: What We Know

Capillary Pressures are High

Can be thousands of psi:
- Variable contact angles (wettability)
- Small pore throat radii (fraction of microns)
- Variable surface tension
 - Surfactants?

\[P_c = L \rho g = \frac{2 \gamma \cos \theta}{r} \]

\(\gamma \) – Surface Tension
\(\theta \) – Contact Angle
\(r \) – Capillary Tube (Pore Throat) Radius
Frac Fluids on Organic Shales: **What We Know**

Shales have a Variety of Pore Systems: Mixed Wettability

- 1a – Water saturated inorganic pore
- 1b – Water wet, gas saturated inorganic pore
- 2a – Gas in fractures
- 2b – Water in fractures
- 3 – Gas in organic pores

Eagle Ford Shale
- Organic Pores
- Conventional Pores

Frac Fluids on Organic Shales, George Waters

Williams (2012)
Frac Fluids on Organic Shales: What We Know

High Salinity Environment: Desiccated Marine Shales

Graph showing TDS (mg/L) and Flow (bpd) over time for different wells.

SPE Asia Pacific Hydraulic Fracturing Conference

Frac Fluids on Organic Shales, George Waters
Frac Fluids on Organic Shales: What We Know

A lot of scale can form quickly: Sulphates, Salts…
Frac Fluids on Organic Shales: What We Don’t Know

How do we quantify frac fluid compatibility?
- Qualitative indicators only

Fluids must be low viscosity and conductive
Relevant for flowing fluids only

Capillary Suction Time
Roller Oven

Frac Fluids on Organic Shales, George Waters
Frac Fluids on Organic Shales: What We Don’t Know

How do we quantify frac fluid compatibility?
- Alternative procedures
- Test before and after water exposure

<table>
<thead>
<tr>
<th>Sample</th>
<th>Hardness Pre</th>
<th>Hardness Post</th>
<th>Hardness Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pierre</td>
<td>5.37</td>
<td>1.42</td>
<td>0.26</td>
</tr>
<tr>
<td>Mancos</td>
<td>9.70</td>
<td>7.08</td>
<td>0.73</td>
</tr>
<tr>
<td>Fayetteville</td>
<td>3.55</td>
<td>1.63</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Hardness = \(\frac{L}{(\pi)(B)(Pen)} \)

- L – Applied Load (kg)
- B – Ball Diameter (mm)
- Pen – Ball Penetration (mm)
Frac Fluids on Organic Shales: **What We Don’t Know**

Does imbibition impact:
- Frac geometry?

Imbibition dramatically reduces effective stress (σ_n').

SPE Asia Pacific
Hydraulic Fracturing Conference

Frac Fluids on Organic Shales, George Waters
Frac Fluids on Organic Shales: What We Don’t Know

Does imbibition impact:

- Casing integrity?
Frac Fluids on Organic Shales: What We Don’t Know

Where is all the frac water?
- In the matrix?

Amount of Water Imbibed into Pore System

- Injected Volume = 20,000 m³
- Hydraulic Frac Width = 0.50 cm
- Frac Surface Area = 4,000,000 m²
- Effective Porosity = 8%
- Initial Sw = 30%
- Imbibed Sw = 80%
- Imbibed Length = 15 mm
- Volume of Imbibed Pore System = 60,000 m³
- Pore Volume = 4,800 m³
- Imbibed Volume = 2,400 m³

Imbibed Volume as a % of Injected Volume = 12%
Frac Fluids on Organic Shales: What We Don’t Know

Where is all the frac water?
- In hydraulic fractures?

Amount of Water Imbied into Pore and Hydraulic Fracture System

- Injected Volume = 20,000 m³
- Hydraulic Frac Width = 0.50 cm
- Frac Surface Area = 4,000,000 m²
- Effective Porosity = 8%
- Initial Sw = 30%
- Imbibed Sw = 80%
- Imbibed Length = 15 mm
- Volume of Imbibed Pore System = 60,000 m³
- Pore Volume = 4,800 m³
- Imbibed Volume = 2,400 m³
- Imbibed Volume as a % of Injected Volume = 12%
- Residual Frac Width = 0.125 mm
- % of Water Trapped Hydraulic Fracture = 20%
- Volume of Trapped Water = 100 m³
- % of Injected Water that is Trapped = 0.5%

Frac Fluids on Organic Shales, George Waters
Frac Fluids on Organic Shales:

Where is all the frac water?

- In natural fractures?

Amount of Water Imbibed into Pore, Hydraulic and Natural Fracture Systems

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injected Volume</td>
<td>20,000 m³</td>
</tr>
<tr>
<td>Hydraulic Frac Width</td>
<td>0.50 cm</td>
</tr>
<tr>
<td>Frac Surface Area</td>
<td>4,000,000 m²</td>
</tr>
<tr>
<td>Effective Porosity</td>
<td>8%</td>
</tr>
<tr>
<td>Initial Sw</td>
<td>30%</td>
</tr>
<tr>
<td>Imbibed Sw</td>
<td>80%</td>
</tr>
<tr>
<td>Imbibed Length</td>
<td>15 mm</td>
</tr>
<tr>
<td>Volume of Imbibed Pore System</td>
<td>60,000 m³</td>
</tr>
<tr>
<td>Pore Volume</td>
<td>4,800 m³</td>
</tr>
<tr>
<td>Imbibed Volume</td>
<td>2,400 m³</td>
</tr>
<tr>
<td>Imbibed Volume as a % of Injected Volume</td>
<td>12%</td>
</tr>
<tr>
<td>Residual Frac Width</td>
<td>0.125 mm</td>
</tr>
<tr>
<td>% of Water Trapped Hydraulic Fracture</td>
<td>20%</td>
</tr>
<tr>
<td>Volume of Trapped Water</td>
<td>100 m³</td>
</tr>
<tr>
<td>% of Injected Water that is Trapped</td>
<td>0.5%</td>
</tr>
<tr>
<td>Natural Fracture Width</td>
<td>0.075 mm</td>
</tr>
<tr>
<td>% of Injected Water that is Trapped</td>
<td>20%</td>
</tr>
<tr>
<td>Required Natural Fracture Area</td>
<td>5.3E+07 m²</td>
</tr>
</tbody>
</table>
Frac Fluids on Organic Shales: What We Don’t Know

How does the residual water impact well performance?
• Is water a “proppant?” – SPE 147603
• Does water reduce fracture conductivity?

Barnett Shale Conductivity Test

SPE 173473

Frac Fluids on Organic Shales, George Waters
Frac Fluids on Organic Shales: What We Don’t Know

How does the residual water impact well performance?

• Does water reduce effective fracture height?
Frac Fluids on Organic Shales: What Can We Do About It?

Frac Fluid and Additive Selection:
- Produced water
 - Inherently compatible
 - Potential additive compatibility
- Wettability
 - Water wetting surface tension reducers
 - Lower capillary pressure, but increases leakoff
 - Hydrocarbon wetting surfactants
 - Leakoff into organic pores: good or bad?
- Inhibitors
 - Scale and salt
- Organic solvents
 - Bitumen removal
Frac Fluids on Organic Shales: What Can We Do About It?

Frac Fluid and Additive Selection:
- Nonaqueous frac fluids
 - Crude oil, diesel, LPG, CO$_2$, CH$_4$...
Frac Fluids on Organic Shales: What Can We Do About It?

Early Flowback
• Minimize time of imbibition, osmotic forces…

Extended Shut Ins
• Allow time for recovery of effective permeability as Sw declines

Surfactants more appropriate for extended shutins
• Accelerate relative permeability recovery
Frac Fluids on Organic Shales: *What Can We Do About It?*

Manage drawdowns to minimize effective stress on pores and proppant

Organic Shale Permeability Decline

Hydraulic Fracture Conductivity Decline
Frac Fluids on Organic Shales: **What Can We Do About It?**

Lateral landing point selection

Eagle Ford Shale Ash Beds

- Smectite-rich altered ash beds (0.1 inch)
- Kaolinite-rich altered ash beds (0.1 inch)
- Smectite-rich altered ash beds (0.2 inch)
- Kaolinite-rich altered ash beds (0.1 inch)
Summary and Conclusions

What We Know:
- Current industry practices have worked
- But we know all of the hydraulic fracture does not produce

What We Do Not Know
- Where is all the frac water
- What impact is it having on productivity

What Can We Do About It?
- Industry standard practices for tight sand fracturing are applicable to shales
 - Propped fractures
 - Managed drawdowns
Thank You and Questions?