SPE DISTINGUISHED LECTURER SERIES
is funded principally
through a grant of the
SPE FOUNDATION

The Society gratefully acknowledges
those companies that support the program
by allowing their professionals
to participate as Lecturers.

And special thanks to The American Institute of Mining, Metallurgical,
and Petroleum Engineers (AIME) for their contribution to the program.
My SPE Distinguished Lecture tour
SPE DISTINGUISHED LECTURE

The End of Stranded Gas:
The Emergence of the Gas to Products Option

Dr. Theo H Fleisch
Distinguished Advisor, BP America
Houston, TX 77079
Outline

• Problem with gas: stranded or associated
• Gas monetization options
• The case for Gas To Products (GTP)
 − What is GTP and GTL?
 − Products and markets
 − Technologies
 − Global projects
 − Economic viability
 − BP’s role in GTP
• The future of GTP
Gas resources: plentiful but...

- Gas Reserves (2005) = 6500TCF (185TCM); “under-explored”

- R/P ratio: ~70 years (versus oil at ~35)

- About 40% of gas (2500TCF) is stranded
 - (Russia, Qatar, Australia, Alaska, ...)
 - Solution: conversion of gas into transportable liquid

- Associated gas: re-injected or flared
Flaring of associated gas (in red; 15 bcfd?)
Remote and flared gas: an inexpensive feedstock

GTP Value creation:

Feedstock: $0 to 1.50/MMBTU

Products: $10/MMBTU

(diesel at $50 oil or methanol at $200/t)

GTP: Transportable, high value products

Greater netback to the feedstock

New markets for gas
Remote Gas Monetization Options

<table>
<thead>
<tr>
<th>Methods</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipeline</td>
<td>Pushing the limits ($25B)</td>
</tr>
<tr>
<td>LNG</td>
<td>Technology of choice today</td>
</tr>
<tr>
<td>GTL (FT, Fischer-Tropsch)</td>
<td>Birth of a new industry</td>
</tr>
<tr>
<td>Methanol</td>
<td>Transition from chemical to fuel</td>
</tr>
<tr>
<td>DME</td>
<td>“SYN-LPG”, Asian Tiger awakens</td>
</tr>
<tr>
<td>CNG</td>
<td>A niche for small & short (EnerSea)</td>
</tr>
<tr>
<td>Gas by Wire</td>
<td>DC transmission cost decreasing</td>
</tr>
<tr>
<td>Hydrates</td>
<td>Moving a lot of water</td>
</tr>
<tr>
<td>Gas by Bag</td>
<td>A very small niche</td>
</tr>
</tbody>
</table>
Gas by Bag
• Problem with gas: stranded or associated
• Gas monetization options
• The case for Gas To Products (GTP)
 – What is GTP, GTL, GTC, etc?
 – Products and markets
 – Technologies
 – Global projects
 – Economic viability
• The future of GTP
GTP: Inclusive term for all chemical gas conversion options (today: 20 bcf/d)

GTL PROCESS
GTC or GTFC TECHNOLOGIES

Reforming
Methane
CH4
O2
H2O
Synthesis Gas
CO + H2

PREMIUM PRODUCTS

FT
Upgrading

Diesel
Naphtha
Syn-crude

Methanol and DME
Gasoline, Hydrogen
Olefins
Ammonia and others

GTL: Gas to Liquids (FT- Fischer Tropsch)
GTC: Gas to Chemicals
GTFC: Gas to Fuels and Chemicals
Industry moves from GTP to “XTP”

Reforming

Methane, Coal, Petcoke, Biomass → Synthesis Gas → CO + H2

GTL PROCESS

FT → Upgrading

Diesel, Naphtha, Syn-crude

GTC or GTFC TECHNOLOGIES

Methanol and DME

Gasoline, Hydrogen

Olefins

Ammonia and others

Gasification/UCG “Clean Coal Technologies”
GTP offers large markets for gas

<table>
<thead>
<tr>
<th>Target Products</th>
<th>Product market size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison: LNG</td>
<td>150 (actual size)</td>
</tr>
<tr>
<td>Synthetic “crude”</td>
<td>3800</td>
</tr>
<tr>
<td>GTL-FT Diesel</td>
<td>1100</td>
</tr>
<tr>
<td>Methanol, chemical</td>
<td>34</td>
</tr>
<tr>
<td>Methanol as/to gasoline</td>
<td>900</td>
</tr>
<tr>
<td>Methanol to DME (LPG)</td>
<td>215</td>
</tr>
<tr>
<td>Methanol to Olefins</td>
<td>140</td>
</tr>
<tr>
<td>Power (methanol, hydrogen)</td>
<td>Very large</td>
</tr>
<tr>
<td>Ammonia</td>
<td>130</td>
</tr>
</tbody>
</table>
Some simple conversion chemistry

Dimethyl-ether (DME)

Methanol

"Diesel"

Hydrogen Carbon Oxygen
About DME

- Easily made from methanol
- Physical properties: like LPG
- Clean bill of health
- Multi-purpose fuel
 - LPG extender (commercial)
 - Ultimate Diesel fuel (fleet demos)
 - Power production (CCGT)
 - Other: olefins, hydrogen, gasoline
- International DME Association (IDA)
- www.aboutdme.org
Methanol/DME in China

2020: 60/30

<table>
<thead>
<tr>
<th>Year</th>
<th>Thousands MT/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>40</td>
</tr>
<tr>
<td>2005</td>
<td>155</td>
</tr>
<tr>
<td>2006</td>
<td>275</td>
</tr>
<tr>
<td>2007</td>
<td>935</td>
</tr>
<tr>
<td>2008</td>
<td>1555</td>
</tr>
<tr>
<td>2009</td>
<td>4155</td>
</tr>
<tr>
<td>2010</td>
<td>8355</td>
</tr>
</tbody>
</table>

- **Shandong Jiutai Chemical Industry**
 - 1 million T/yr - 2009
 - Xinao Group
 - 400,000 T/yr - under construction
 - Mengda Group
 - 1 million T/yr – under planning
 - Luthianhua Group
 - 200,000 T/yr – under planning
 - Xinao Group
 - 400,000 T/yr - under construction

- **Shanxi Lanhua Sci-Tech**
 - 100,000 T/yr – under construction, 2007
 - (Jincheng)

- **Lanhu Group**
 - 1,000,000 T/yr – under planning

- **Shenhua Ningxia Coal Industry Group**
 - 210,000 T/yr - 2007
 - To 830,000 T/yr - 2008

- **Yankuang Group**
 - 200,000 T/yr - 2009

- **Yuannan Jiehua Chem. Group**
 - 150,000 T/yr – 2007
 - Under construction

- **Hubei Zhongjie Petrochem. Group**
 - 100,000 T/yr – under const. - 2007

- **Hubei Biocause Pharmaceutical**
 - 100,000 T/yr – under planning -2007

- **Shandong Jiutai Chemical Industry**
 - 1 million T/yr - 2009

- **Xinao Group**
 - 100,000 T/yr – under construction

- **Mengda Group**
 - 1 million T/yr – under planning

- **Luthianhua Group**
 - 10,000 T/yr – 2003
 - 110,000 T/yr – 2006

- **Shanghai Coking/Huayi Company**
 - 5000 T/yr – Apr.2006

- **Xinao Group**
 - 10,000 T/yr – Jan. 2006

- **Luthianhua Group**
 - 200,000 T/yr – under planning

- **Shenhua Ningxia Coal Industry Group**
 - 210,000 T/yr - 2007
 - To 830,000 T/yr - 2008

- **Yuannan Jiehua Chem. Group**
 - 150,000 T/yr – 2007
 - Under construction

- **Hubei Zhongjie Petrochem. Group**
 - 100,000 T/yr – under const. - 2007

- **Hubei Biocause Pharmaceutical**
 - 100,000 T/yr – under planning -2007

Memo: This is a work in progress, Ron Sills, Sept. 19, 2006

1 MT DME requires 1.4 MT methanol
Automotive fuel demand scenario to 2100

Energy Demand ($10^{18} J$)

- Diesel / Gasoline
- Electricity
- Gas
- Hydrogen
- Synthetic fuels and biofuels
- Liquid Fuels
- Gaseous Fuels

Source: IEA

Data source: WEC; with modification
The dangers of technical prediction

• **Nuclear-powered vacuum cleaners will probably be a reality in 10 years** - Alex Lewyt, president of vacuum cleaner company Lewyt Corp., 1955

• **There is no reason anyone would want a computer in their home** - Ken Olson, president of Digital Equipment Corp. 1977

• **Drill for oil? You mean drill into the ground to try and find oil? You're crazy.** - Drillers who Edwin L. Drake tried to enlist in 1859

• **Radio has no future. Heavier-than-air flying machines are impossible. X-rays will prove to be a hoax** - William Thomson, Lord Kelvin, 1899
Role of GTP in host countries

• Gas resource holder increasingly value GTP
 - GTP: Requirement for gas access and country entry
 - Algeria: Tinnirhert GTL bid
 - Qatar: “GTL Capital of the World”
 - Trinidad: “GTP Capital of the World”
 - No more flaring policies

• Key advantages
 - Diversity of products and markets
 - Country industrialization (investments, jobs)
 - Acceleration of gas monetization
 - New “unconstrained” markets for gas
GTL (and some other GTP) markets are virtually unconstrained.

GTP is an excellent complement to LNG.
Gas resource consideration

- LNG: massive scale; multiple trains
 - >10 tcf resource requirement

- GTP: massive scale AND smaller scale
 - World scale methanol/DME plant: 150mmscf/d, <2 tcf
 - World scale GTL plant: 300mmscf/d, ~3tcf
Summary: Products and markets

• XTP offers a broad product portfolio
 – Improved conventional fuels (diesel, gasoline, jet fuel, etc)
 – New “designer” fuels and fuel additives (methanol, DME, hydrogen, ethanol, etc)
 – New large volume chemicals (olefins)

• Fuel properties
 – Greatly improved performance and emissions
 – Preferred (early) applications: blends

• XTP is a must have tool in the tool box
Problem with gas: stranded or associated
Gas monetization options
The case for Gas To Products (GTP)
 - What is GTP and GTL?
 - Products and markets
 - Technologies
 - Global projects
 - Economic viability
The future of GTP
GTL technology challenges

Gas Plant

CH₄

Co+H₂

(-CH₂-)ₙ

Reformer

FT Plant

Upgrading

O₂

ASU

Naphtha

Diesel
GTL projects: the birth of an industry

World GTL
Trinidad
4kbpd

Tinrhet
Algeria
35kbpd

Heritage Plants
Shell Bintulu
PetroSA Mossgas

BP
“Colombia Condor”
~35kbpd

Sasol
“Oryx”
35kbpd (70kd/d train 2)

Shell
“Pearl”
140kbpd (Nov. 2003)

ExxonMobil
160kbpd (July, 2004)
PP: Feb. 2007

Marathon/Syntroleum
ConocoPhillips
SasolChevron
POSTPONED

Many other proposed projects
Methanol/DME projects: transition from chemicals to fuels

- Iran DME: 2500 TPD
- Iran Methanol: 1-5 5,000 TPD
- Oman Methanol: 3,000 TPD
- Qatar Methanol: 6,750 TPD
- Methanol Holdings in Trinidad: (2) 5,000 TPD
- Methanol in Egypt
- Nigeria/Eurochem MTO: 7,500 TPD
- Qatar DME Int’l Corp.: 2,500-4,500 TPD
- Japan DME Ltd: 3,000 TPD
- Oman Methanol
- Qatar Methanol
- Iran DME
- Methanol Holdings in Trinidad
- Methanol in Egypt
- Methanol for Fuel, Power/Olefins
- DME

Memo: Not including <5,000 MTPD methanol plants
As we stand here today to celebrate the inauguration of Oryx GTL, we are changing the world’s energy paradigm with gas-to-liquids (GTL) technology.

- His Excellency Abdullah Bin Hamad Al-Attiyah, Second Deputy Premier, Minister of Energy and Industry, Qatar, and Qatar Petroleum chairman.

Plant Statistics

- 34,000 bpd capacity
- 24,000 bpd Diesel
- 9,000 bpd Naphtha
- 1,000 bpd LPG

Construction Start – Dec 2003

Project Completion – March 2007

Believed to have cost $1.2 Billion
Atlas Plant (Trinidad): Pioneer methanol plant

- 5000tpd (160MMscfd); equivalent to 15,000bpd GTL
- Operated by Methanex, BP is 40% equity partner
- World’s largest single train reformer
GTP Economics: summary

• 2000: GTL reached parity with LNG in economic returns
 − Robust economics at $20 crude and Capex of $25k/bbl (2000)
 − But EPC cost increases: >$50k/bbl (2006)

• 2006: Relative economic viability
 − GTL (~$35/bbl), CTL (~$50 - 60/bbl), BTL (~$85/bbl)
 − Higher crude prices favor GTP over LNG

• Methanol and DME can be delivered at $5-7/MMBTU and become viable as fuels above $30 crude
 − Fuel methanol and DME are commercial realities in China
 − Olefin projects underway (new low cost technology)
Important factors for economics

1. Feedstock cost

2. Capital cost
 - Location factor
 - Boundary conditions
 - Inflation

3. Product prices
GTL Cost Trends

- Relatively few commercial-scale projects to date
- Significant scope, scale and location-specific differences
- Estimates based on published data
LNG Liquefaction Cost Trends

Drivers:
- Economies of scale (e.g. liquefaction, storage & shipping)
- Increased competition (e.g. licensors, contractors, suppliers)
- New technology (e.g. cryogenic pipelines; flexible hoses)

Drivers:
- EPC demand and supply imbalance
- Materials and labour costs
- Vendors and manufacturing (e.g. exchangers, turbines, compressors)
- LNG shipping and yard availabilities
- Increase in schedules
LNG and GTL comparison: boundary conditions

Fixed Chain
- **600 MMSCF/D**
- LNG Plant: ~4 mtpa
- Shipping: ~3500 nm, 3 x 130,000 m3
- Regasification

Unconstrained Market
- **600 MMSCF/D**
- GTL Plant: 75,000 bbl/day
- Product carriers: spot/term
- Distribution/Blending

Shell
Impact of product prices (USA)

US Energy Costs ($/Million BTU)

Diesel > Natural gas/LNG > Coal

Liquid fuels >> natural gas
Economics of GTL vs. LNG

Key Issues:
- Oil:gas price relationship; gas capped by coal
- LNG capex: plant only or value chain capex?
- Strategic value:
 - Revenue diversification
 - Value added in-country
 - LNG and GTP

Net Present Value

Oil Price ($/bbl)

LNG Price ($/mmbtu)
Summary: Pros and cons of GTP

PROS
- Large new markets
- Host country appeal
- Premium "designer" products
- Robust economics
- Proven technologies
- Scaleability

CONS
- Capital intensive
- Scale-up risks
- Aversion to new products
- Poor efficiencies
Process carbon efficiencies

<table>
<thead>
<tr>
<th>Benchmark:</th>
<th>Carbon efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNG and refineries</td>
<td>85 - 90</td>
</tr>
<tr>
<td>GTL today</td>
<td>75 – 80</td>
</tr>
<tr>
<td>Goal</td>
<td>~/>85</td>
</tr>
<tr>
<td>Methanol/DME today</td>
<td>80 – 83</td>
</tr>
<tr>
<td>Goal</td>
<td>85 - 90</td>
</tr>
</tbody>
</table>
The future in GTP

- On-going R&D and value engineering
 - lower cost plants
 - Higher efficiencies
- Floating applications
 - Marinization of GTL FT
 - Micro-channel technologies (Velocys, CompactGTL)
- New products from syngas
- Gas refinery
 - Integration of different plants
 - Further conversion of primary products into consumer products (plastics)
Technology Benchmark: Syntroleum FPSO

16,300 bpd GTL
150 mm-scfd Gas
$1.2b EPC
20,150 M²
Integrated Gas Refinery Concept

Feedgas Supply → NGL Extraction → NGLs

NGLs → Ethane → PetChem e.g. ATC

NGLs → Methane → Syngas Hub

Syngas Hub → GTL Diesel → Core GTP Offer

Syngas Hub → DME Plastics

Syngas Hub → Methanol (Acetic Acid)

Syngas Hub → Ammonia (Urea)

Syngas Hub → Power Plant

Syngas Hub → LNG

Integration Options
BP GTP Profile

- World class R&D group (~60 people)
- Relationship with Berkeley, Caltech, DICP (~60)
- Broad GTP product portfolio (CR, FT, alcohols,...)
- Atlas methanol plant (with Methanex)
- Portfolio of project options
- Decarbonized fuel projects
- Jan 2007: Transition to XTP
Hydrogen power projects: “DF2” – Carson Refinery

Gasification: C + H2O = CO + H2
Syngas cleanup
Shifting: CO + H2O = CO2 + H2
Separation: CO2 and H2
Summary

- GTP and XTP are here to stay: new options for resource holders
- Oryx and Atlas: pioneer plants for new GTL and methanol/DME business
- Target feedstocks: stranded gas, flares, domestic coal
- Products: high performing, low emitting fuels
- No more stranded gas