SPE DISTINGUISHED LECTURER SERIES

is funded principally through a grant of the

SPE FOUNDATION

The Society gratefully acknowledges those companies that support the program by allowing their professionals to participate as Lecturers.

And special thanks to The American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME) for their contribution to the program.
Viscous Oil EOR by Viscosity Reducing Immiscible (VRI) WAG Process

Bharat S Jhaveri

BP Exploration (Alaska) Inc.
Acknowledgements

- SPE
- BP, Exxon Mobil, ConocoPhillips
- Alan Clark
- Frank Paskvan
- Jonathan Williams
- Katrina Yancey
- Pat McGuire †
- Rydell Reints

† SPE 93914
Viscosity Reduction WAG: An Effective EOR Process for North Slope Viscous Oils
Outline

• Motivation
• Miscible WAG* EOR
• Viscosity Reducing Immiscible WAG
• North Slope Situation
• Closing Remarks

* Water-Alternating Gas
Motivation For Gas EOR in Viscous Oil

• Conventional technology* not applicable
 - Too deep
 - Offshore
 - Arctic

• Big projects with many high rate wells

• Available gas resource
 * e.g. Steam, Hot water flooding
Outline

• Motivation

• Miscible WAG EOR
 – Enriched Gas Drive
 – Vaporizing Gas Drive

• Viscosity Reducing Immiscible WAG

• North Slope Situation

• Closing Remarks
Miscibility Mechanism
Low Viscosity Oil – 10 cp
Pseudo-Ternary Diagram

$P_R = 2000$ PSIA

Critical point

Dew point

Bubble point

Two Phase

Single Phase
Enrichment Process

\[P_R = 2000 \text{ PSIA} \]

Critical point

Dew point

Bubble point

Two Phase

Single Phase

Oil

\(C_H \)

\(C_L \)

\(C_1 \)
MI - Oil Miscibility

$P_R = 2000$ PSIA

- Single Phase
- Critical Composition
- Dew point
- Two Phase
- Bubble point
- Oil

C_H, C_L, C_I
Pressure Dependence

$P_R = 1500$ PSIA

Critical point

Single Phase

Dew point

Two Phase

Bubble point

Oil

C_L

C_H

C_I
Pressure Dependence

$P_R = 2500 \text{ PSIA}$
Minimum Miscibility Pressure (MMP)

\[P_R = 2000 \text{ PSIA} \]

- Critical Composition
- Dew point
- Bubble point
- Two Phase
- Single Phase
- \(C_H \)
- \(C_I \)
- \(C_L \)
- MI
Slimtube Recovery: Miscible

MMP (Minimum Miscibility Pressure)
Miscible Displacement Process

Transition Zone

MI → Oil
Phase Viscosities in Slimtube

![Graph showing oil and gas viscosities along a slimtube](image-url)
Miscible WAG EOR Summary

- Injection gas rich in (C₂-C₄) hydrocarbons
- Fluid properties change by mass transfer
- MI composition a key design parameter
- WAG process to optimize gas sweep
Moderate Viscosity Oil – 57 cp
VRI Mechanism

\[P_R = 2000 \text{ PSIA} \]

Critical point
1 Phase
2 Phase

VRI
(Viscosity Reducing Injectant)

Oil

\(C_H \)
\(C_I \)
Slimtube Recovery: Immiscible

Recovery @ 1.2 PV

1.0

Pressure, PSIA

2000

3500

P_R

MMP
VRI Displacement Process

VRI

Transition Zone

Viscous Oil

Reduced Viscosity Oil
Viscosity Reduction in Slimtube

Inj. ----> Distance along slimtube (Grid-block no.) Prod.

Oil Viscosity
Gas Viscosity

Oil, Gas Viscosity, cp
Viscosity Reduction in PVT Cell

![Graph showing the relationship between VRI Injected Moles/Mole and Oil Viscosity (cp)](image-url)

- **Y-Axis:** Oil Viscosity (cp)
- **X-Axis:** VRI Injected Moles/Mole

The graph illustrates a decrease in oil viscosity as the number of VRI Injected Moles/Mole increases.
VRI Reservoir Process (2D)

- Vertical injector, horizontal producer
- Waterflood, WAG simulations
- Low and Moderate Viscosity Oils
- 1:1 WAG ratio, 30% HCPV Gas Injection
Injectant Description

- Low viscosity (10 cp) oil miscible with injected gas (MI)
- The same MI immiscible with moderate viscosity (57 & 117 cp) oils
- Injectant referred to as VRI for moderate viscosity oils
Slimtube Recoveries for 2 Oils

Injected Gas
Miscible for 10 cp
VRI for 50 cp
EOR Recoveries for MI & VRI (2D)

EOR recovery similar for MI & VRI
Earlier EOR response for lower viscosity oils
VRI WAG Process

- Injectant not rich enough in (C_2-C_4) hydrocarbons
- Oil viscosity reduction and swelling by mass transfer
- Improved displacement by subsequent water injection
- WAG process to optimize gas sweep
Outline

- Motivation
- Miscible WAG EOR
- Viscosity Reducing Immiscible WAG
- North Slope Situation
- Closing Remarks
Map of Alaska North Slope
Prudhoe Bay Central Gas Facility

- ~500 mmScf/d MI
NS Viscous Oil Opportunity

- Huge Resource (Tens of BSTB)
- Current development targets ~5 BSTB in W. Sak/Schrader Bluff Formation
- Low primary & waterflood recovery
- Available Gas Resource
- Prudhoe MI not miscible with moderate to high viscous oil (>15 cp)
Schrader Bluff Oil Quality Variation

C5+ fraction normalized to 100%

Miscible Target

VR-WAG Target

Mole %

Carbon Number

- 10
- 8
- 6
- 4
- 2

5 7 9 11 13 15 17 19 21 23 25 27 29

40 cp W-203 Polaris
87 cp WS 1-01 D-Sand
61 cp WSP 8i D-Sand
10 cp Orion L117 OBd
57 cp Orion Z-39 OBd
117 cp Orion Z-39 OBa
52 cp Polaris W205 OBc
11 cp Milne S-12
EOR Prediction Methodology

Phase Behavior Model
- PVT, Slimtube Data
- EOS

Reservoir Simulation
- Type patterns (based on reservoir description)
- EOR Type Curves (Oil, MI, RMI)

Field Scaleup
- Project area segments (segment PV, well allocations)
- Tank model scaleup

- Huge Development Target
- 50 mmscf/d of VRI injection
- 12 MBD EOR rate, 6% (OOIP) EOR
- MI efficiency close to classical miscible
North Slope VRI Status

- VRI project designed for Polaris & Orion fields
- IRS ruled VRI process as a qualified recovery method for EOR tax credit
- Alaska State approval to commence VRI injection in Polaris reservoir.
 - Injecting 2 mmscf/d MI in W-215
 - 6% EOR recovery from 350 MSTB OOIP
- Application for Orion VRI injection approved
 - 1,000 MSTB OOIP target with similar EOR recovery expected
Key Project Design Components

- (Lean Gas, NGIs, MI Capture)
- Surveillance (Gas Analysis, Well Intervention)
- Injectivity (Water/MI, Gas Trapping)
- Conformance (Zonal, Volumetric)
- Flood Management MI Resource (Voidage Replacement, Pressure Maintenance, WAG Ratio, MI Slug, MI Allocation)
- Asphaltenes Dropout (Reservoir & Facility)
Closing Remarks

• When conventional technology not applicable
• VRI technology can dramatically increase primary and waterflood recovery in viscous oil reservoirs
• Recovery enhancement by viscosity reduction and swelling
• Developed approach for the design, engineering, and evaluation of viscous oil gas EOR projects
Viscous Oil EOR by Viscosity
Reducing Immiscible (VRI) WAG Process

Bharat S Jhaveri

BP Exploration (Alaska) Inc.