SPE DISTINGUISHED LECTURER SERIES

is funded principally
through a grant of the

SPE FOUNDATION

The Society gratefully acknowledges
those companies that support the program
by allowing their professionals
to participate as Lecturers.

And special thanks to The American Institute of Mining, Metallurgical,
and Petroleum Engineers (AIME) for their contribution to the program.
Overview

- New loads and limitations
 - Thermal effects – annular pressure build-up
 - Designing with limited casing bore
 - Extreme landing tools
- Beyond “API designs”
 - Probabilistic design considerations
 - ISO 10400
Annular Pressure Build-up (APB)
Annular Pressure Buildup (APB)

- Origin of APB loads
- Mitigating APB
 - Principles and solution categories
 - Specific well construction tools

16 in. casing collapse from APB during circulation
The origin of APB

What do we do about this hydrocarbon bearing zone?
APB depends on

- Mechanical and thermal properties of fluid
- Flexibility of the confining boundary
- Temperature increase

Considering the fluid component,

\[
\Delta V_f = V_f \left[\alpha_f \Delta T - \frac{1}{C_f} \Delta p \right]
\]
Mitigating APB

Brute Force
- Thick-walled casing

Fluid Properties
- Foam spacer
- Fluids with low psi/F
- Cement entire annulus

Control the Load
- Vacuum Insulated Tubing (VIT)
- Nitrogen blanket
- Gelled brine
- Connection leak integrity
- Initial annulus pressure

Container Flexibility
- Vent the annulus
 - Active path to surface
 - Relief mechanism
 - Formation fracture/TOC
 - Rupture disks
 - Grooved casing
- Annulus communication
- Syntactic foam
- Avoid trapped pressures external to annulus
Mitigating APB

Fluid Properties

- **Foam spacer**
- Fluids with low psi/F
- Cement entire annulus

![Graph showing pressure vs. quality of total trapped system.](image)
Mitigating APB

Container Flexibility

- Vent the annulus
 - Active path to surface
 - Relief mechanism
 - Formation fracture/TOC
 - Rupture disks
 - Grooved casing
- Annulus communication
- Syntactic foam
- Avoid trapped pressures external to annulus
Mitigating APB

Container Flexibility

- Vent the annulus
 - Active path to surface
 - Relief mechanism
 - Formation fracture/TOC
 - Rupture disks
 - Grooved casing
- Annulus communication
- Syntactic foam
- Avoid trapped pressures external to annulus
Mitigating APB

Control the Load

- **Vacuum Insulated Tubing**
- Nitrogen blanket
- Gelled brine
- Connection leak integrity
- Initial annulus pressure
Mitigating APB – Vacuum Insulated Tubing (VIT)

![Diagram showing temperature variations and brine phases with depth and connections](image-url)
Designing within wellbore limitations
Deepwater HPHT wells, maintaining hole size

- Geometric constraints
 - Minimum → production tubulars, SSSV
 - Maximum → 18-3/4 in. bore

- Possible solutions
 - Riserless drilling
 - Managed pressure drilling
 - Designer muds
 - **Revisit casing risk profile**
 - Probability x consequence
 - Recovery
 - Empirical validation
 - Solid expandable liners
Maintaining hole size - example

- 8-1/2 in. hole on bottom
- Production tubulars with 18,000+ psi internal yield
- 5-1/2 in. tubing
- 9-3/8 in. upper tieback drift (subsurface safety valve)
- Clearance outside tieback for APB mitigation (syntactic foam)
Extreme landing loads
Landing strings and slip crushing

- Landing string static loads approaching 1.5 mm lbs
 - Impulse load during tripping
 - Heave induced excitation
- Applicability of Reinhold-Spiri
 - To current systems?
 - To other slip problems?
Understanding slip systems

- Strain gauged samples indicate
 - Non-uniform loading
 - Worst loading may be between inserts

![Graph showing axial tensile load and pipe yield](image_url)

- AXIAL TENSILE LOAD = 100,000 lb
- AXIAL TENSILE LOAD = 300,000 lb
- AXIAL TENSILE LOAD = 500,000 lb
- AXIAL TENSILE LOAD = 700,000 lb
- AXIAL TENSILE LOAD = 900,000 lb

- NUMBER OF LINE LOADS = 3
- YOUNG'S MODULUS = 30 x 10^6 psi
- POISSON'S RATIO = 0.3
- YIELD POINT = 100,000 psi
- WALL THICKNESS = 0.5 in
- MEAN RADIUS = 3.0 in

Uniaxial Yield Strain 5014 psi

Distance from Slip Line in...

Solid Line - Hoop Strain
Dashed Line - Axial Strain
Probabilistic design considerations
Detailed inspection data
Application – calculation of cross-sectional area

Pipe Identifier: 02356
Application – detailed collapse prediction

- Line pipe samples
 - X65, D/t 16-18+
- Detailed input
 - Wall, diameter
 - Axial, hoop σ-ϵ coupons
 - Residual stress
- Full scale tests
 - Pressure with bending
 - Collapse, propagation
- Excellent results (<3% no bending, 0-9% with bending)
Probabilistic advantage using rupture disks

- Disk pressures have tight, controlled tolerances (± 5% on rupture pressure)
- Contrast with 12.5% wall tolerance and 10-30 ksi tensile strength variation for casing body
 - Wide uncertainty of casing rupture and collapse pressures
 - Cannot count on outer string failing first
<table>
<thead>
<tr>
<th>Clause</th>
<th>Subject</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>Introduction, symbols</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Triaxial yield</td>
<td>von Mises yield</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Axial yield, internal yield pressure as special cases</td>
</tr>
<tr>
<td>7</td>
<td>Ductile rupture</td>
<td>All new</td>
</tr>
<tr>
<td>8-17</td>
<td>Collapse, connections, mass, elongation, etc.</td>
<td>Identical to existing formulas</td>
</tr>
<tr>
<td>Annexes</td>
<td>Details, derivations, performance property tables</td>
<td>Probabilistic properties (from performance or production data)</td>
</tr>
</tbody>
</table>
Conclusions

• No lack of challenging problems
 – Continuing research on annular pressure mitigation
 – Rethinking old solutions

• Design stretch via probability
 – Increasing support from standards