The SPE Distinguished Lecturer Program is funded principally through a grant from the SPE Foundation.

The society gratefully acknowledges the companies that support this program by allowing their professionals to participate as lecturers.

Special thanks to the American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME) for its contribution to the program.

Society of Petroleum Engineers
Distinguished Lecturer Program
www.spe.org/dl

Pitfalls to Avoid in Assessing Artificial Lift Run-Life Performance

Francisco Alhanati
C-FER Technologies

Society of Petroleum Engineers
Distinguished Lecturer Program
www.spe.org/dl
Impact on Economics

• Artificial Lift Run-Life Performance directly affects:
 – Work over frequency
 – Work over costs
 – Production losses

Impact of ESP Run-Life

<table>
<thead>
<tr>
<th>Overall Workover Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Runtime (days)</td>
</tr>
<tr>
<td>$0 120 240 360 480 600 720 840 960</td>
</tr>
<tr>
<td>$0 50 100 150 200 250 300 350 400</td>
</tr>
<tr>
<td>% revenue</td>
</tr>
<tr>
<td>0% 5% 10% 15% 20% 25% 30%</td>
</tr>
</tbody>
</table>

- 20 Wells
- Average oil production per well: 1,000 bpd
- Average intervention cost: 150 k US$
- Average workover & waiting time: 60 days
- Oil price: US$60/bbl
AL Run-Life Performance is important

• Key Performance Indicator (KPI)
 – effects of changes in operational conditions, equipment selection and operational practices
 – used in many alliance contracts between operators and vendors

Assessing AL RL Performance

• Not as simple as it may sound
 – Several measures used throughout the industry
 – Trends are often misleading

• Issues must be understood, so that
 – Pitfalls can be avoided
 – Proper RL measures can be selected
Run-Life and Runtime

• For many installations, Run-Life is not known, only Runtime
 – Systems that are still running
 – Systems that were pulled for other reasons than system failure

Censoring

• The data is said to be “censored”
• One can only hope to obtain estimates of average Run-Life
• Based on all the systems Runtime
Run-Life Estimates

- Average Runtime can be calculated for:
 - All systems (pulled or still running)
 - Running systems only
 - Pulled systems only
 - Pulled and Failed systems only

- All these averages can be calculated based on different exposure times
 - Time-in-Hole, Total Runtime, Actual Runtime

- Over different (calendar) periods of time
 - Last two years, last five years, etc.

Run-Life Estimates

- Average Runtime of pulled systems:
 - Includes failure of other “systems”: tubing, sand control, etc.
 - It is a reasonable indicator of the overall production system reliability
 - But not of the AL system reliability

- Average Runtime of failed systems:
 - Also affected by failures of other “systems”
 - Not a good indicator of the AL system reliability either
Run-Life Estimates

• At a certain point of time, all you can have is a statistical “best estimate”, or “expected value” of average Run-Life or Mean Time to Failure (MTTF)

Run-Life Estimates

• Average Failure Rate:
 – Number of failures per well over a period of time
• MTTF estimate:
 – the inverse of the average failure rate
 – ratio of the total time in operation (for all systems, pulled or still running) to the number of failures:

\[
\langle MTTF \rangle = \frac{\sum T_{\text{pulled}} + \sum T_{\text{running}}}{\# \text{failed}}
\]
What is a Failure?

• Failure:
 – The termination of the ability of an item to perform its required functions

ISO 14224: Petroleum and Natural Gas Industries: Collection and Exchange of Reliability and Maintenance Data for Equipment

Common Pitfalls

• Early Failures versus Frequent Failures
• Improvement versus Aging
• Component Reliability and System RL
• Failure Mechanism versus Failure Cause
ESP-RIFTS Data
Locations of Fields

Common Pitfalls

• Early Failures versus Frequent Failures
• Improvement versus Aging
• Component Reliability and System RL
• Failure Mechanism versus Failure Cause
What is the least reliable component? Is it the gas separator?

Which is more reliable? The motor or the cable?

Common Pitfalls

- Early Failures versus Frequent Failures
- Improvement versus Aging
- Component Reliability and System RL
- Failure Mechanism versus Failure Cause
Is the system reliability improving?
Or are the systems just aging?

Common Pitfalls

- Early Failures versus Frequent Failures
- Improvement versus Aging
- Component Reliability and System RL
- Failure Mechanism versus Failure Cause
Is the equipment from both manufacturers equally reliable?

Common Pitfalls

- Early Failures versus Frequent Failures
- Improvement versus Aging
- Component Reliability and System RL
- Failure Mechanism versus Failure Cause
Failure Classifications

• **Reason for Pull**
 – Suspected system failure or any other reason
 – e.g.: stimulation, re-completion

• **Primary Failed Item and Descriptor**
 – Component (or part) in which the failure likely initiated, and likely mechanism
 – Based on observations during pull or teardown
 – e.g. motor burn

• **Failure Cause:**
 – The circumstances during design, manufacture or use which have led to a failure
 – e.g. improper assembly during installation

Failure Analysis Process

System Failure
- Reason for Pull defined: e.g., No flow to surface

System Pull and Teardown
- Items and Descriptors defined: e.g., Shorted MLE

Failure Investigation
- Cause defined: e.g., Installation; Improper Assembly
Do I have a manufacturing (QC) problem?
Or do I have an operational problem?

![Number of Failures by Failure Cause]

Conclusions

- There are several measures used throughout the industry
- One needs to understand their meaning to properly interpret the trends
- Best picture of the situation likely requires looking at several measures
- Improvement requires thorough investigation of the failure causes
- Be aware of the pitfalls!
Acknowledgement

• ESP-RIFTS JIP Participants:
 – BP - Petrobras
 – Chevron - Repsol-YPF
 – ConocoPhillips - Rosneft
 – EnCana - Shell
 – ExxonMobil - StatoilHydro
 – KOC - TNK-BP
 – Nexen - Total