The SPE Distinguished Lecturer Program is funded principally through a grant from the SPE Foundation.

The society gratefully acknowledges the companies that support this program by allowing their professionals to participate as lecturers.

Special thanks to the American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME) for its contribution to the program.

Society of Petroleum Engineers
Distinguished Lecturer Program
www.spe.org/dl
Improving Drilling Performance
By Applying
Advanced Dynamics Models

Mark W. Dykstra, Ph.D.
Shell Exploration and Production

Society of Petroleum Engineers
Distinguished Lecturer Program
www.spe.org/dl
The Message

- Drilling system vibration affects drilling efficiency
- Uncontrolled vibrations can lead to poor hole quality

Reference: Santos, et al.
“Consequences and Relevance of Drillstring Vibration on Wellbore Stability,”
SPE/IADC 52820
Considering Engineering Simulation?

100% success rate
39% more accurate
30x more efficient

—ARA Engineering, Inc.

(Sometimes, your decision is black and white.)

DesignSpace®

To read the complete ARA Engineering Report,
Mainstream CAE Tools:
Technical Considerations and Informative Comparisons,
visit www.ara-eng.com/special-report.htm

Reference:
ASME Journal
Types of Dynamics Models

- **Research Models**
 - More detailed analyses
 - Bit designs (PDC, RC)
 - BHA design
 - Bit/BHA system performance
 - Nonlinear FEA
 - Beam elements
 - Complex contact geometry
 - Complex vibration inputs
 - Refined load and stress estimates
 - Transient dynamic loads and stresses
 - Post-buckling analyses

Improved computational horsepower has made use of “research” models more practical
Research Model Applications

• PDC Bit Dynamic Stability
 - Evaluated via laboratory testing
 • Constant speed (often 120 RPM)
 • Increment weight on bit (ROP)
 • Identify transition from “unstable” to “stable”
 - Time consuming and costly
 - Needed a predictive model

Unstable 8.500-in. M434

Stable 8.750-in. M123
Bit Dynamics Model

- Stability Prediction
- Dynamic Load Evaluation
 - 120 RPM, 3 ft/hr
 - Force vectors shown in yellow and green

Reference: Hanson, Hansen
“Dynamics Modeling of PDC Bits,” SPE/IADC 29401
If PDC Cutters Could Talk …
Verification of Stability Predictions

- Laboratory Tests
 - 27 designs, 5.875 to 17.500-in., various IADC classes
Improving PDC Bit Stability

• Laboratory Tests
 – Hard limestone ($c_o=15$ kpsi), 120 RPM
Dynamic Load Predictions

Cutter Power vs. Cutter Damage

7.875-in. M123

Diamond Table Loss

Smooth Rotation Power

Avg. Dynamic Power

Max. Dynamic Power

Cutter Scaled Radial Position

Power (BTU/hr)

Diamond Table Loss

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Bit Center Bit Gauge
Load Predictions Through Beds

- Formation changes affect load distribution

Segmented core used for laboratory tests

Soft \rightarrow Hard (nose)

Hard \rightarrow Soft (cone, shoulder)
Research Model Applications ...

- Roller Cone Bit Design
 - Elimination of off-center running tendencies
Research Model Applications ...

- BHA Dynamic Stability
 - Unbalanced components feed whirl
 - Mass imbalance in collars
 - Eccentric rotor rotation
 - Frictional interaction with wellbore triggers BHA whirl
 - High average accelerations
 - Extreme impacts
 - Needed a predictive model

Whirl caused by mass imbalance
Drillstring Dynamics Model

- **8.500-in. Horizontal Hole**
 - Instrumented motor
 - MWD tool
 - LWD tool

- **Operating Conditions**
 - WOB = 22.4 klb
 - TOB = 4.6 klb-ft
 - $\rho_M = 11.7$ ppg

Reference: Heisig, Neubert
“Lateral Drillstring Vibrations In Extended-Reach Wells,” IADC/SPE 59235
Laboratory Verification

Reference: Aldred, W.D. and Sheppard, M.C
“Drillstring Vibrations: A New Generation Mechanism and Control Strategies,” SPE 24582
Verification of Bending Predictions

- Controlled Field Tests
 - 12.250-in. hole, RC-STB-MWD-STB-DC
 - Limestone drilling
Research Model Applications ...

- Bit-Drillstring System Performance
 - Effect of BHA vibration on bit loading
Research Model Applications ...

- Bit-Drillstring System Performance
 - The effect of BHA vibration on bit loading
 - Operating parameters for sub-optimal BHAs
Financial Impact: Improved Bits

- UK North Sea Application
 - Hard and abrasive zones
 - Poor PDC life in offsets
 - Needed to improve in 12.250-in. section
12.250-in. Section Performance

- Focus Well
 - New designs drilled further and faster

- Versus Offset
 - Section drilled in half the time

- Savings
 - US $663 per foot
 - US $816,282 for section

<table>
<thead>
<tr>
<th>Bit Type</th>
<th>Depth Out (ft)</th>
<th>Drilled (ft)</th>
<th>Hr.</th>
<th>Avg. ROP (ft/hr)</th>
<th>Cost/ft (US$/ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1.1</td>
<td>13,535</td>
<td>49</td>
<td>11.7</td>
<td>4.1</td>
<td>2,274</td>
</tr>
<tr>
<td>New 609</td>
<td>13,930</td>
<td>395</td>
<td>30.1</td>
<td>13.2</td>
<td>467</td>
</tr>
<tr>
<td>New 408</td>
<td>14,437</td>
<td>507</td>
<td>42.2</td>
<td>12.0</td>
<td>476</td>
</tr>
<tr>
<td>New 608</td>
<td>14,820</td>
<td>383</td>
<td>38.3</td>
<td>10.0</td>
<td>686</td>
</tr>
<tr>
<td>Standard 1.2</td>
<td>15,013</td>
<td>193</td>
<td>32.1</td>
<td>6.0</td>
<td>897</td>
</tr>
<tr>
<td>Standard 2.1</td>
<td>15,128</td>
<td>115</td>
<td>14.3</td>
<td>8.0</td>
<td>1,049</td>
</tr>
</tbody>
</table>
Financial Impact: BHA Refinement

- Norwegian North Sea Application
 - 6,000-10,000 ft horizontals in reservoir
 - Geosteering to stay above O/W contact
 - Soft sands, some calcite cemented zones
 - Could not steer PDC bits on motors
 - RS systems potentially offered step change

- Early Challenges
 - Bit performance
 - RS system durability

- Multidisciplinary Focused Study
 - Advanced models used for both bit and RS system refinement

Reference: Fiksdal, Rayton, Djerfi
"Application of Rotary Steerable System/PDC Bits … ," SPE/IADC 29401
9.500-in. Hole Section Performance

<table>
<thead>
<tr>
<th>Description</th>
<th>Before Study</th>
<th>After Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average interval length</td>
<td>8,856 ft</td>
<td>8,856 ft</td>
</tr>
<tr>
<td>Calcite stringers</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>Number of runs</td>
<td>8.5</td>
<td>5</td>
</tr>
<tr>
<td>Run length</td>
<td>1,273 ft</td>
<td>2,102 ft</td>
</tr>
<tr>
<td>Bit runs</td>
<td>10.4</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>(6.7 RC, 3.7 PDC)</td>
<td>(0.9 RC, 3.7 PDC)</td>
</tr>
<tr>
<td>ROP</td>
<td>35.1 ft/hr</td>
<td>67.2 ft/hr</td>
</tr>
<tr>
<td>BHA component failures</td>
<td>3.5</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Failure Distribution

<table>
<thead>
<tr>
<th></th>
<th>Before Study</th>
<th>After Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 25 circulating hours</td>
<td>25%</td>
<td>14%</td>
</tr>
<tr>
<td>25 - 75 hr</td>
<td>18%</td>
<td>14%</td>
</tr>
<tr>
<td>> 75 hr</td>
<td>57%</td>
<td>72%</td>
</tr>
</tbody>
</table>

- **Improved Drilling Efficiency**
 - Improved bit performance
 - Improved RS BHAs
 - Savings approach US$1MM per well based on drilling time
Summary

• Advanced dynamics models are useful for planning
 – Bit design optimization
 – BHA design optimization
• Advanced dynamics models are useful while drilling
 – Lessons learned provide insights into improved operating parameters
• Advanced dynamics models are useful for post-analysis
 – Evaluation of downhole vibration measurements
 – Failure analysis of drilling system components
• Advanced dynamics models improve performance
 – PDC bit efficiency and durability
 – RC bit efficiency and durability
 – LWD tool durability
 – Hole quality
Potential Performance

Performance is enhanced by redesigning to extend the founder point

Region III: Founder
- Bit Balling
- Bottom Hole Balling
- Vibrations

Region II: Efficient Drilling

Region I: Inadequate Depth of Cut

Reference: Dupriest and Koederitz
“Maximizing Drill Rates with Real-Time Surveillance of Mechanical Specific Energy,” SPE/IADC 92194
Questions?