The SPE Distinguished Lecturer Program is funded principally through a grant from the SPE Foundation.

The society gratefully acknowledges the companies that support this program by allowing their professionals to participate as lecturers.

Special thanks to the American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME) for its contribution to the program.
Value of Seamlessly Collaborative Integrated Studies

Presented by
Yasin Senturk

Principal Professional
Petroleum Engineering and Development
Saudi Aramco Oil Company
Dhahran, Saud Arabia

Society of Petroleum Engineers
Distinguished Lecturer Program
www.spe.org/dl
OUTLINE

● Introduction
● Objective
● Premise of Collaborative Studies
● Critical Resources/Drivers
 ➢ Qualified Professional Manpower (Minds)
 ➢ Multidisciplinary “Know-How” (Expertise)
 ➢ Integrated Decision Analysis (IDA) - The Process, Bases and Methodology
● Conclusions : A Corporate Check List
Introduction
Sequential vs. Collaborative Processes

- Sequential “Asset Team” Approach (Late 1980’s)
 - Exploration & Delineation
 - Reserves Assessment
 - Reservoir Development & Management
 - Production Operations
 - Processing & Sales
 - Sub-Optimal Solutions

- Seamlessly “Collaborative Team” Approach (During 2000’s)
 - Exploration & Delineation
 - Reserves Assessment
 - Reservoir Development & Management
 - Production Operations
 - Processing & Sales
 - Parallel workflows & synergies captured: Optimal Solutions.

Yasin Senturk, Principal Professional, Saudi

April 2009 – Malaysia, Philippines and India
Objective

Create Value and **Maximize Shareholders’ Wealth**
through Synergizing **minds, tools and database.**

HOW?

- Educate, Recruit, Develop and Retain Qualified Professional Workforce

- **Integrate Multidisciplinary “Know-How”**\(^*\) to carry out appropriate studies to help make rational investment decisions.

\(^*\) Defined as Core Competencies/Expertise in **Technical, Business and Leadership Skills** ★

Yasin Senturk, Principal Professional, Saudi

April 2009 – Malaysia, Philippines and India
Collaborative Studies
The Premise

Focus only on what matters

Work in parallel with faster tools

Improved Resources Utilization & Substantial Savings in Time ★
Collaborative Studies
Key Attributes

- Multi-disciplinary / Cross-Functional Teams
- Dedication & Focus
- Parallel Workflows
- Full Spectrum of Alternatives
- B-i-C Integrated Decision Analysis (IDA)
- Better & Faster Results and Decisions
- Synergy (Minds, Tools & Database) ★

Yasin Senturk, Principal Professional, Saudi
April 2009 – Malaysia, Philippines and India
Collaborative Studies

Synergies Captured: Minds, Tools & Database

Yasin Senturk, Principal Professional, Saudi

April 2009 – Malaysia, Philippines and India
Critical Resources / Drivers

- **Qualified Professionals:** Minds
 - Key Attributes, Education, Learning & Development (L&D)

- **Multidisciplinary “Know-How”: Expertise**

- **Integrated Decision Analysis (IDA):** Putting it all together to capture synergies of Minds, Tools and Database
Qualified Professionals
Key Attributes

Successful Professional

- Ambitious
- Results-Oriented
- Technically Proficient
- Team Player
- Effective Communicator
- Business Savvy

Summary: Possess Technical, Business & Leadership Skills

* How learning the topic like porosity (e.g. reserves) is going to contribute to this bottom line must be emphasized.
Qualified Professionals…

L&D – Competency Development Cycle

Define
Set / Review
Personal Goals &
Business Needs

Assess
Identify Development
Needs & Skills GAP

Create Personal Skill Inventory
(Discipline Specific)

Environment
Conducive for
Quality Learning &
Development (L&D)

Review
Assess Effectiveness
& Create Personal
Skills Inventory

Plan
Prepare/Modify
Development
Action Plan

Execute
Implement
Development
Actions

- Courses
- Planned Work Experiences
- Special Job Assignments

Adapted from “Oxy’s input to PetroSkills (2004 Conclave, Houston, TX)”

Yasin Senturk, Principal Professional, Saudi
Qualified Professionals…
L&D - Career Progression & Value Added

Measures Progress & Sets Expectations for Performance Delivery ★

Adapted from “Unocal’s input to PetroSkills (2004 Conclave, Houston, TX)”

Yasin Senturk, Principal Professional, Saudi

April 2009 – Malaysia, Philippines and India
Critical Resources / Drivers

- Qualified Professionals - Minds

- Multidisciplinary “Know-How” - Expertise
 Technical, Business and Leadership Skills

- Integrated Decision Analysis (IDA)
Multi-Disciplinary “Know-How”

Three (3) Core Competencies / Expertise:

● **Technical Specialties/Skills**
 ✓ Earth Sciences – Geology & Geophysics
 ✓ Petrophysics
 ✓ **Engineering** - Drilling & Completion, Reservoir, Production & Facilities
 ✓ Statistics & Decision Analysis
 ✓ Maintenance & Operations, etc.

● **Business Skills** - Economics & Finance

● **Leadership Skills** – Knowledge Sharing, Communication, Impact & Influence, etc ★
Critical Resources / Drivers

- Qualified Professionals - Minds
- Multidisciplinary “Know-How” - Expertise

- Integrated Decision Analysis (IDA)
 Synergies captured thru Minds, Database & Tools
Integrated Decision Analysis (IDA)

The Process – A Pictorial View

Geological Model

Data Acquisition

Database

Simulation Model

Interpretation & Modeling

Technical Analysis

• Multiple Realizations
• Reserves
• Development Options

Decision Analysis

Plans for Execution

Business Model

Yasin Senturk, Principal Professional, Saudi

April 2009 – Malaysia, Philippines and India
Integrated Decision Analysis (IDA)
The Process – A Conceptual Premise

Reservoir Characterization, Modeling & Simulation
(Multiple Realizations – Volumes & Profiles)
TECHNICAL ANALYSIS

Data & Knowledge Management
(Acquisition & Learning)
DATABASE

Evaluation of Alternatives, including Risk Analysis
(Reserves, Development Plans and Producing Strategies)
DECISION ANALYSIS

Planning and Field Implementation
ACTION PLAN

Yasin Senturk, Principal Professional, Saudi
April 2009 – Malaysia, Philippines and India
Integrated Decision Analysis

Technical Issues – Key Parameters

With Significant Impact on Results:

- Proper Physics
- Details - Grid Size, Number of Layers
- Petrophysical-based Rock Typing
- INPUT DATA Quality – Static and Dynamic
- Initialization – How to propagate & distribute data?
- Simultaneous Nodal Analysis (Reservoir, Completion, Wellbore & Surface) ★
Integrated Decision Analysis

Technical - Location of Trapped Oil Example

Delta Sw in 30 Years
(14 Layer Model; 53,000 cells)

Delta Sw in 30 Years
(128 Layer Model; 1.4 million cells)

SPE 71628 Pavlas

Yasin Senturk, Principal Professional, Saudi

April 2009 – Malaysia, Philippines and India
Integrated Decision Analysis
Technical - Quantifying Uncertainty

Risk Profile & Expectation Curve

Mean=28
Average or Expected Value (EV)

SD-Variability/Risk

Cumulative Probability

Reserves (MMSTB) / Value (MM$)

Yasin Senturk, Principal Professional, Saudi
April 2009 – Malaysia, Philippines and India
Volumetric Equation: \(\text{EUR} = \left[A \times h \times \phi \times (1 - Swi) / \text{FVF} \right] \times \text{RF} \)

Random Variables
(Probability Distributions)

- Porosity Normal
- Swi Log-Normal
- Ah Triangular
- RF Uniform

Volumetric Model

Fixed Parameters

Expectation Curve

Yasin Senturk, Principal Professional, Saudi

April 2009 – Malaysia, Philippines and India
Production Profile Realizations

Exaggerated Scales

- Oil Rate (STB/Day)
- Cumulative Production (MMSTB)
- Years

Exaggerated Scales

- Oil Rate (STB/Day)
- Cumulative Production (MMSTB)
- Years
Integrated Decision Analysis
Technical - Reserves Assessment (Dynamic)

Model Results

- P90
- P50
- Mean
- P10

Best Technical Scenario

Cumulative Probability

- 100%
- 50%
- 0%

Oil Recovery (MMSTB)

- 0
- 20
- 40
- 60
- 80
- 100
- 120
- 140
- 160

Distribution fit
Simulated realization

Yasin Senturk, Principal Professional, Saudi

April 2009 – Malaysia, Philippines and India
Integrated Decision Analysis

Business Issues - Sustainable Earnings Growth

--

Annual Earnings ($)

Growth Objective for Corporate Earnings (with New Investments)

Net Earnings required to meet Objectives in year T_i

Projected Earnings from Existing Projects (no further Investment)

Earnings Gap Analysis (Newendorp & Schuyler, 2000)

Yasin Senturk, Principal Professional, Saudi
Integrated Decision Analysis

Business - Corporate Objectives

- Maximize shareholders’ value (SHV) while
 - minimizing exposure to loss; and
 - ensuring earnings growth at a stipulated rate

- Preferable when the Corporation
 - makes Profit each year,
 - stabilizes Profit and sustainable Growth,
 - maintains Liquidity and Solvency, and
 - is a good Corporate Citizen.
Maximize Market Value Added (MVA)

\[MVA = \text{Market Value (MV)} - \text{Book Value (BV)} \]

Maximize (MV:BV) Ratio thru making continuous and sound new investments

Balance Sheet explains 15\% (1/6) of Value Added only.

Remaining 85\% (5/6) by Talent & Intelligent Assets ★
Integrated Decision Analysis

Business - Valuation/Appraisal Model

- Has Appropriate Business Model
- Accounts for the Time Value of Money Concept
- Quantifies Judgments about Uncertainty and incorporates the Risks in project cash flows.
- Uses realistic Company Discount Rate (or MARR)
- Has a Figure of Value, the best value measure:
 - NPV @ MARR % (Deterministic Analysis)
 - EMV @ MARR % (Probabilistic Analysis)

Decision Rule: Accept if Project NPV or EMV ≥ 0

Yasin Senturk, Principal Professional, Saudi
April 2009 – Malaysia, Philippines and India
Integrated Decision Analysis

Business - Cash Flow based Valuation Model

Net Cash Flow (NCF)

Income Taxes

Costs

- OPEX
- CAPEX

Revenue

Production Taxes

Royalty

Production Profiles

- Drilling – Platforms & Wells
- Well Flowlines
- Production & Injection Facilities
- Oil & Gas Pipelines ★

- Fixed Costs (Labor)
- Variable Costs
 - Lifting Costs
 - Electricity
 - Etc.
Integrated Decision Analysis

Business - Evaluation Methods (How?)

- **Deterministic Methods**
 - DCF Analysis and NPV Profiles
 - Sensitivity Analysis

- **Probabilistic Methods**
 - Decision Tree Analysis
 - Monte Carlo Simulation
Deterministic Approach

Comparing Projects by NPV Profiles

Key Profitability Measures Summary

<table>
<thead>
<tr>
<th></th>
<th>Project A</th>
<th>Project B</th>
<th>Incremental Project (A - B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment Capital (MM$)</td>
<td>300</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>NPV @ 10% (MM$)</td>
<td>416</td>
<td>205</td>
<td>211</td>
</tr>
<tr>
<td>DCF - ROR (%)</td>
<td>46%</td>
<td>53%</td>
<td>39%</td>
</tr>
</tbody>
</table>

Graphical Representation

- **NPV Profiles**
 - **Project A**
 - **Project B**
 - **Incremental Project (A - B)**

- **Nominal Discount Rate (%)**
 - **MARR = 10%**
 - **RORA = 46%**
 - **ROR(B) = 53%**
 - **ROR(A-B) = 39%**

Yasin Senturk, Principal Professional, Saudi

April 2009 – Malaysia, Philippines and India
Integrated Decision Analysis

Business - Evaluation Methods (How?)

- **Deterministic Methods**
 - DCF Analysis and NPV Profiles
 - Sensitivity Analysis

- **Probabilistic Methods**
 - Decision Tree Analysis
 - Monte Carlo Simulation
Deterministic Approach
Sensitivity Analysis – “Project A” NPV

Tornado Diagram for a Typical Oil & Gas Producing Property

Sensitivity of Project NPV to Changes in the Key Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>-30%</th>
<th>+30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Price</td>
<td>$28/bbl</td>
<td>$40/bbl</td>
</tr>
<tr>
<td>Discount Rate</td>
<td>+30%</td>
<td>13%</td>
</tr>
<tr>
<td>CAPEX</td>
<td>+30%</td>
<td>-30%</td>
</tr>
<tr>
<td>OPEX</td>
<td>+30%</td>
<td>-30%</td>
</tr>
</tbody>
</table>

Net Present Value, NPV (Million $)

Yasin Senturk, Principal Professional, Saudi
April 2009 – Malaysia, Philippines and India
Integrated Decision Analysis
Business - Evaluation Methods (How?)

- Deterministic Methods
 - DCF Analysis and NPV Profiles
 - Sensitivity Analysis
- Probabilistic Methods
 - Decision Tree Analysis
 - Monte Carlo Simulation
Decision Tree Analysis

"Project A" Expected Value Estimates

<table>
<thead>
<tr>
<th>Reserves Size (MMSTB)</th>
<th>NPV @ 10%</th>
<th>EMV @ 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>$200 MM</td>
<td>$60 MM</td>
</tr>
<tr>
<td>0.3</td>
<td>$400 MM</td>
<td>$240 MM</td>
</tr>
<tr>
<td>120</td>
<td>$700 MM</td>
<td>$70 MM</td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EMV of the Project A: $370 MM

Decision Rule: Higher the EMV better the project profitability.

Yasin Senturk, Principal Professional, Saudi

April 2009 – Malaysia, Philippines and India
Integrated Decision Analysis
Business - Evaluation Methods (How?)

- Deterministic Methods
 - DCF Analysis and NPV Profiles
 - Sensitivity Analysis
- Probabilistic Methods
 - Decision Tree Analysis
 - Monte Carlo Simulation

Yasin Senturk, Principal Professional, Saudi
April 2009 – Malaysia, Philippines and India
Monte Carlo Simulation

“Project A” NPV Risk Profile

\[NCF_t = Volume_t \times Price_t - Royalty_t - OPEX_t - CAPEX_t - Taxes_t \]

Cash Flow Model

Fixed Parameters (Deterministic)

Profile with an EMV of $385 MM as compared to Single NPV Estimate of $416 MM

\[NPV @ 10\% = \sum_{t=0}^{t=n} \frac{NCF_t}{(1 + MARR)^t} \]
Probabilistic Analysis
Comparing and Ranking Projects

Decision: Project B is clearly superior to Project A. ✮
Decision: 1) For a risk-neutral investor, Project A is better than Project C.

2) For a risk-averse investor, it is not clear & further analysis required. ★

Yasin Senturk, Principal Professional, Saudi
April 2009 – Malaysia, Philippines and India
Probabilistic Analysis

Comparing Projects - Risk Neutral vs. Averse

Risk Adjusted Value, \(\text{RAV} = \text{EMV} - \frac{\sigma^2_{NPV}}{2B} \)

Decision Rule: For a given Budget \((B)\), the **higher the RAV, better is the project profitability.** ★

Yasin Senturk, Principal Professional, Saudi

April 2009 – Malaysia, Philippines and India
Portfolio Optimization

Example Investment Portfolios

<table>
<thead>
<tr>
<th>Portfolio Budget, B</th>
<th>NPV @10% (MMS)</th>
<th>SD (MMS)</th>
<th>Actual Inv (MMS)</th>
<th>No. of Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>B = $400 MM</td>
<td>1,069</td>
<td>705</td>
<td>400</td>
<td>9</td>
</tr>
<tr>
<td>Risk Neutral</td>
<td>788</td>
<td>466</td>
<td>382</td>
<td>6</td>
</tr>
<tr>
<td>Risk Averse</td>
<td>1,924</td>
<td>903</td>
<td>980</td>
<td>15</td>
</tr>
<tr>
<td>B = $1,100 MM</td>
<td>1,890</td>
<td>886</td>
<td>1,077</td>
<td>14</td>
</tr>
</tbody>
</table>

Funds Available for Investment ($)

Cumulative NPV Generated ($)

Started with 16 Projects
With NPV of $2,070 MM
(requires $1,165 MM Capital)
Investment Portfolio Optimization
Ideal vs. Actual

Maximizing Shareholder Wealth (or MV) requires:
- Optimized Capital Structure with Optimal D/E Ratio & minimized MARR
- Maximized Return on Existing Projects (Capital)
- Maximized Value Added by the New Investment Portfolio ($A w/ $Y)

Yasin Senturk, Principal Professional, Saudi

April 2009 – Malaysia, Philippines and India
Seamlessly Collaborative Studies

Putting it all Together: Maximize Shareholders’ Wealth

Business Skills Integrated IDA
(Business Impact & Execution)

Technical Skills Leadership Skills

Degree of Collaboration

“Know How”/Expertise

Yasin Senturk, Principal Professional, Saudi

April 2009 – Malaysia, Philippines and India
CONCLUSIONS

VALUE of Collaborated Studies

A Corporate Check list, Do You HAVE?

- Qualified **Professional Workforce** – Educate, Recruit, Develop & Retain
- Optimized **Capital Structure** and **Minimized Raider’s Gap**
 - Survival of the fittest
- Ranked Risk Adjusted **Inventory of Investment Opportunities**
- Continuous Development & Execution of **Optimal Business Plan Investment Portfolios (Repeatability)**
- Sustainable **Earning Growth**
- Distinct **Competitive Advantage** (Intelligent Assets)

END RESULT: Maximized **Shareholders’ Value** because of

VALUE CREATION thru **Synergies Captured** via **Integration, Technology & Scale** ★
Thank you...