Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME

Society of Petroleum Engineers
Distinguished Lecturer Program
www.spe.org/dl
Multiple Pay Tight Gas Sands
Can the Lessons Learned in the Rockies Help You?

Mike Eberhard P.E.
Halliburton Energy Services
Agenda

• Rocky Mountain Tight Gas
• “Factory” Completions for Efficiency
• Reservoir Considerations for Factory Completions
• Fracture Treatment Considerations
• Post Frac Evaluation
• Results
• Summary
Rockies Tight Gas Definition

- Lenticular sand formations dominate current completion programs
 - Sand shale sequences
- Resource plays
 - < 5 μd perm
- Hydraulic fracturing is required for economic production
- Over-pressured
LiDAR-Orthophoto Composite Outcrop Photo – Piceance

Figure provided by Matt Pranter (University of Colorado at Boulder) and Rex Cole (Mesa State College)
Pinedale/Jonah Area

- Up to 40 wellbores from a single pad
- 3,000 to 5,000 ft of gross interval
 - 30 to 60% net
 - TOOP 8 - 10,000’
- Up to 60 individual sands
Stacked Pay Geology – Rockies

30 Individual sands

13 Frac Stages
Tight Gas Sand Issues

• Marginal economics
 – High decline wells
 – Small drainage areas (reservoirs)

• A large number of wells required for economic programs
 – High density drilling programs

• Cost reduction by efficiencies
 – Factory “assembly line” approach
High Density Well Spacing - Piceance
High Efficiency Operations
“Frac Factories”

- Simultaneous operations
 - Drilling, perforating, fracing, completing, producing
High Efficiency Operations
“Frac Factories”

• Simultaneous operations
 – Drilling, perforating, fracing, completing, producing
• Multiple wells on a single surface pad
• Multiple wells treated from a single frac equipment location
• Goal - Multiple fracture treatments done per crew every day
Simultaneous Operations

- Drilling and completion on same surface location
Simultaneous Operations

- Drilling and completion on same surface location
- New to US land operations
- Safety is primary concern
- Requires improved field coordination
- Better efficiency of existing equipment
 - 24/7 completion operations
- Reduces environmental impact
Multiple Stages per Day

- Traditional perforate and plug
 - Use of composite flow through frac plugs
Multiple Stages per Day

- Traditional perforate and plug
 - Use of composite flow through frac plugs
- Coiled tubing deployed placement
- Continuous pumping operations
Multiple Pad Completions

10 remote sites
40 wells
406 frac stages

Map Courtesy of EnCana
Pitfalls with Factory Completions

- Ignoring the reservoir
- “Cookbook” frac designs become standard
- Logistics start to mandate completions
- Well cost becomes main concern
Systematic Approach

Petrophysical Model

Stimulation Design

Model Review

Reservoir Characterization Frac Design

Predict Well Performance

Offset Completions

Field Wide Surveillance

Surveillance of Results

Daily Work Flow Begins Here

Validate Stimulation Model
A Petrophysical Model Will…

• Assist with determining completion intervals
 – “What-if” scenarios
• Incorporate reservoir potential into frac design considerations
 – Proppant type, job size, etc.
• Predict well performance based on completion program
Building a Petrophysical Model

- Core analysis
 - Corrected for bottom hole conditions
- Diagnostic Fracture Injection Tests (DFIT)
 - Before and after closure
- Treating pressures
- Production results
Unconventional Pressure Transient Testing

Fracture-Injection/Falloff Tests

- Pre-frac or Refrac Evaluation
- Falloff Analysis
 - Reservoir Properties
 - Fracture Properties
- Multilayer models
Stimulation Issues

• Very long completion intervals
• Optimization of stimulation design
• Supply chain management
 – Water, proppant
• Consistent improvement in a large scale project
Design and Operations

• Traditional issues
 – Fluid systems
 – Proppant types
 – Additives
• Single or multiple well completion program
• When to flow back and for how long
• Reuse of frac and/or formation fluids
Single Well Completion

• Typically wireline plug and perf
 – Use flow thru composite bridge plugs (FTCBP)
• Limit number of intervals per frac stage
• Can be 24/7 operation
• Use a solid BP to isolate different pressure regimes
• Flow back well after completion
Multiple Well Completions

• Treat several wells from a single location
 – Requires close proximity
• Complete one or two stages then flow the well back
• Only move frac iron not equipment
• Use FTCBP for frac stage isolation
More Frac Factory Concerns

- No time to review results from changes
- Several wells completed before a problem is noticed
- Science is not done up front
 - High density drilling
- High change over of personnel
Diagnostics for Design

- Tiltmeters
- Microseismic monitoring
Diagnostics for Design

• Tiltmeters
• Microseismic monitoring
• Chemical/radioactive tracers
• Temperature distribution analysis
• Production Logs
Monitor and Adjust

- Does the actual production match predicted?
- Does the stimulation treatment pressure history matches predicted?
- Does the production profile look reasonable?
Production Improvement Using Reservoir Based Completion Designs

The median well produces 50% more gas per frac dollar spent than the average well with only customer input.

2005 wells designed to meet customer Criteria

2006 wells designed by service company and customer

2006 wells designed using a swift evaluation analysis

Median well finding cost improved by 50%

90 Day MCF per Frac $
Benchmark Changes

Slick Water with Microemulsion

Slick Water Frac

Gel System

Hybrid Frac

Cumulative Frequency

EUR, BSCF
Summary

• Efficient drilling/completion programs
• Effective stimulation of multiple intervals
• Watch out for pitfalls of factory mentality
• Calibrated petrophysical models
• Unconventional PTA used
• Consideration well completion strategy
• Use of diagnostic tools and lookback studies