Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME
State of the Art in Open Hole Sand Control Completions: Advancements & Gaps

Mehmet Parlar
Schlumberger
Outline

• Openhole Sand Control Techniques
• Technique Selection Criteria
• Past Challenges & Advancements in each
 – Open Hole Sand Control Technique along with
 – Inflow Control Devices
 – Zonal Isolation
 – Intelligent Completions
• Gaps
• Conclusions
Productivity Driver for Open Hole

Oilfield Review (Summer 2001)

CASED HOLE FRAC-PACKS
Open Hole Sand Control Techniques

Stand Alone Screen (SAS)
(WWS, Metal Mesh)

Expandable Screen (ES)
(Compliant, non-Compliant)

Gravel Pack (GP)
(α/β, Alternate Path, α/α, β-only)

Open Hole Frac Pack?
(SPE 73757, 84416, 135441)
Selection Considerations

• Technical
 – PSD, rock strength, shale breaks & frequency, zonal isolation
 – Limitations of each technique
 – Laboratory testing

• Tolerance to solids production
 – Surface facilities, disposal, erosion

• Economics, Risk, Logistics
 – Total completion cost & cost of failure

• Comfort (Perceived Risk) Factor
Particle Size Distribution & Its Representation

\[D_{50}, C_U = \frac{D_{40}}{D_{90}}, C_S = \frac{D_{10}}{D_{95}} \]

% Fines (\(< 44 \mu\))
Commonly Used Criteria

SPE 39437, Tiffin et al.

- **CS** (\(= \frac{D_{10}}{D_{95}}\)) < 10 \(\Rightarrow\) SAS
 - **CU** (\(= \frac{D_{40}}{D_{90}}\)) < 3 and Fines < 2% \(\Rightarrow\) WWS
 - 3 < **CU** < 5 and 2% < Fines < 5% \(\Rightarrow\) Mesh

- **CS** > 10 or **CU** > 5 or Fines > 5% \(\Rightarrow\) GP

• Adapted by Price-Smith et al. *(SPE D&C, Sep. 2003)*

• Challenged by
 • Mathisen et al. citing field experience *(SPE 107539)*
 • Chanpura et al. thru lab evidence *(SPE 127931)*
Standalone Screens (SAS)

- Bad taste from early stages of learning curve
 - Screen plugging when screens installed in
 - not well-conditioned mud
 - well-conditioned mud but mixing of formation sand with mud (where sanding occurs on Day 1)
 - wells where no mud cake cleanup performed, with mixing of mudcake & formation sand (sanding occurs on Day 1)
Screen Testing for SAS

<table>
<thead>
<tr>
<th></th>
<th>Slurry Tests</th>
<th>Prepack Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulates</td>
<td>Gradual failure</td>
<td>Hole collapse</td>
</tr>
<tr>
<td>Concentration</td>
<td>Low (<1%)</td>
<td>High (~ 50%)</td>
</tr>
<tr>
<td>Pack forms</td>
<td>During test</td>
<td>Start of test</td>
</tr>
<tr>
<td>Pumped at</td>
<td>Constant Q</td>
<td>Constant P</td>
</tr>
</tbody>
</table>

- Sand produced vs. Time *(or Sand Injected)*
 - Sand retention efficiency
- Pressure *(or Flow Rate)* vs. Time
 - “Plugging” tendency
- Size Distribution of Produced Solids
 - Erosion considerations
Drawbacks of Current Slurry Test Methods & Interpretation

- Selection based on relative ranking, and even then NOT straight forward:
 - Tests stopped prematurely (100 psi limit)
 - Once sand production stops or stabilizes (true fines problem), slope should be independent of screen
 - Effects of open flow area, converging flow and Forchheimer flow effect
 - Flow rates ~ 1-2 orders of magnitude higher vs. Field
 - “Plugging” is OFTEN coverage of screen openings by sand.

Favors Mesh Screen vs. Wire Wrap Screen
Plugging with Sand alone: Rare

Plugging due to mixing of sand with:
- Shales/Silts (annular isolation) or
- Mud/Mudcake (displacements/cleanup)
30 of 45 WWS (and 70 of 140 PMS) tests with $U_C : 5 – 26$ satisfied a very conservative sand retention criterion.
RECENT MODELING WORK

<table>
<thead>
<tr>
<th>PRE-PACK</th>
<th>SLURRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MESH GEOMETRY (Metal Mesh/Premium)</td>
<td>SPE 146656, Mondal et al. (2011)</td>
</tr>
</tbody>
</table>
Prepack: Numerical Simulations

\[N_p = \alpha \left(\frac{D_p}{w} \right)^{-\beta} \]

SPE 134326
Slurry: Monte Carlo Simulations & Analytical Solutions

• Sand retention purely size exclusion
 – No bridging

• Given a slot opening and a PSD
 • Pick particles at random
 • Produce if smaller than slot and retain if bigger.
 • Determine sand production per unit area

\[M_{prod} = \frac{\rho \pi}{6w} \left[\left(1 - \frac{X}{X}\right) d_x^2 \right] \left(\frac{A_s}{A} \right) \]

\[d_x = \sqrt{\frac{X}{\sum_{i=1}^{n_d} \left(\frac{x_i}{d_i^2} \right)}} \]
Comparison to Experimental Results

![Graph showing cumulative percent retained vs. particle size (micron)]

TABLE 4—COMPARISON OF SAND PRODUCTION FROM MONTE CARLO SIMULATIONS RESULTS WITH EXPERIMENTAL DATA

<table>
<thead>
<tr>
<th></th>
<th>MC Simulations (g/cm²)</th>
<th>Data (g/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test1</td>
<td>0.0914</td>
<td>0.0919</td>
</tr>
<tr>
<td>Test2</td>
<td>0.0468</td>
<td>0.0907</td>
</tr>
<tr>
<td>Test3</td>
<td>0.2073</td>
<td>0.0754</td>
</tr>
</tbody>
</table>
Recent Experimental Data

<table>
<thead>
<tr>
<th>Sand Production In lb/ft²</th>
<th>EXPERIMENT</th>
<th>MONTE CARLO</th>
<th>ANALYTICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSD-a</td>
<td>0.40</td>
<td>0.42</td>
<td>0.43</td>
</tr>
<tr>
<td>PSD-b</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
</tr>
</tbody>
</table>

If accurate PSD ➔ MODEL IS PREDICTIVE
Conclusions of SPE 143731

• Analytical & numerical solutions available now for prediction of slurry sand retention tests
 • Analytical solution gives > 90% of the answer because after the first layer of sand particles cover the slots sand production ~ stops and screen has NO FUNCTION.
 • Conventional fines definition (<44 Microns) is IMMATERIAL to selection of screen.
 • What matters is the COARSER portion of the PSD.
Expandable Screens

• Viewed as
 – Elegant alternative to gravel packing by some
 • simpler to install, and
 • up to a certain length lower cost than gravel pack
 – Expensive SAS by some others
 • Wellbore collapse at onset of hydrocarbon production
 – New technology by some others

• Had its successes & failures much like others
 – SPE 97282
Expandable Screens

• Technology evolved substantially to single trip installation with zonal isolation capability *(SPE 106342)*

• Compliant versus non-Compliant
 • How much of a gap is small enough?
 • Finding the right application for each?
 • Proper geomechanical work required.
 • Some of the failures associated with loss of sand control attributed to “localized collapse”

• Cased Hole Producers, especially in high transmissibility formations: Abuse of ESS technology
Open Hole is Forgiving

Fig. 2—Comparison of production rates from gravel-packed openhole and cased-hole completions. Open hole: 50-ft vertical interval, 1-darcy formation, 8.5-in. hole; cased hole: 12 shots/ft, 0.75-in. collapsed perforations. IPR = Inflow performance relationship, TIC = tubing-intake curve, CH = cased hole, and GP = gravel pack.

- SAS/ESS in Cased Hole NOT the best choice for "high rate producers".
Open Hole Gravel Pack (OHGP)

• Why would anyone go through additional pumping stage if Screen Only will do it?

 – Not every well is an SAS candidate
 • Frequent thin shale breaks (too many packers)
 • Zero tolerance to sand production
Challenge: No More

• Swabbing during tool movements
 • Filtercake liftoff & leakoff at start of circulation (*SPE 48976*)
 • **Anti-Swab Tools** (*SPE 74492*)
 • Hydraulic communication

• Post-Gravel Pack Filtercake Cleanup
 • Required Coiled Tubing
 • **Tools with Post-GP Circulation capability** (*SPE 50651*)
Challenge: No More

• Reactive Shales
 – Shale swelling and/or collapse before or after screen installation
 • *SPE 89815, 90758, 107297*
 – Shale dispersion in Carrier Fluid

• Shale Stabilizers *(SPE D&C, 2008)*
 • Displacement and Carrier Fluids *(SPE 121834)*
Challenge: No More

- Reactive Shales- Contd.
 - Oil-Based Drilling
 - Oil-Based Gravel Packing
 - Viscous Packing (*SPE D&C, 2006*)
 - α/β Packing (*SPE D&C 2009*)
 - Water-Based Gravel Packing
 - Two-Trip (*SPE 48976, 73727, 89815, 90758*)
 - Single-Trip w/ Screens RIH in Oil Based Fluids
 - Conditioned OBM (*SPE 90758, 98146, 115434*)
 - Solids Free OBM in Open Hole & Brine in Cased Hole (*SPE 134319*)
Challenge: No More

- Narrow Operational Window (Fracturing)
 - Loss of circulation & premature screenout
 - Diverter Valves (SPE 71668)
 - World Record: 8,305 ft. in 2003 (OTC 15281)
 - Light Weight Gravel (SPE 17169, 96257)
 - Friction Reducer (SPE D&C, Sep 2010)
 - These solutions can take α/β packs a long way!
 - Alternate Path (SPE 86532)
 - Transport/Packing Tubes, Nozzles, Concentric Entrance, Swell Packers
Zonal Isolation

• Considered as the biggest disadvantage of open holes vs. cased holes

 – Hydraulically Inflated Packers
 – Hydro-Mechanically Set Packers (SPE 77214)
 – Swell Packers (SPE 78312)
 – Expandable Packers (SPE 106342)
Zonal Isolation

– Gravel Packing
 – Full isolation with complete pack still a matter of debate
 – Isolation packer set
 – After gravel packing (SPE 77214)
 – Before gravel packing [SPE 146361, SPE 146803 (swell packers) ➔ Alternate Path]
Inflow Profile Control

• Higher inflow near heel or high perm streaks
 – Premature water or gas breakthrough
 – **Inflow Control Devices** (*SPE 108700, Review*)
 – Channel Type (*SPE 78293*)
 – Nozzle Type (*OTC 19172*)
 – Hybrid Type (*OTC 19811*)
 – Many SAS Applications (e.g., *SPE 107539*)
 – 1 documented OHGP (*SPE D&C, Mar 2008*)
 – Non-ICD screen at toe
 – Some 2 trip installations
 – Ongoing developments
Inflow Profile Control

• Ability to adjust flow, including shut-off
 – Active Inflow Control Devices (IPTC 12145, *Comparison of Active vs Passive*)
 – Many applications to date injectors & producers
 – Some limitations for active flow control devices
 – Control lines
 – Open hole applications limited to ~ 2 compartments in cases when another tubing is run inside screen
 – Alternatively, sliding sleeve type solutions exist
 – Require intervention (e.g., CT run)
Intelligent Completions

• Real time measurements along sandface
 – Fiber Optic
 • Distributed Temperature Sensor
 • Pressure Gauge
 • Distributed Vibration Sensor
• Communication of Power & Data
 – Between upper & lower completion in subsea completions *(SPE D&C, June 2010)*
• Active Flow Control along sandface
Gaps

• Selection guidelines based on solid grounds
 – SAS (WWS vs PMS) vs ESS vs OHGP
 – Not only insufficient information sharing, particularly of failures, but also lack of thorough understanding why.

• Predictive models for sand production through sand control screens
 – Good results for laboratory environments, but even that part is not yet complete (accuracy of PSD measurements: Sieve, Laser ??)
 – What do these really say about field scenario?
Gaps

• Laser vs Sieve for PSD

• Particle Size Distribution Log
 – Ongoing work in various companies

• Impact of bean up (ramp up) procedures
 • How, under what conditions, why?

• Real time data during installation & execution

• Sandface measurements combined with active flow control
Conclusions

• Significant advancements made in the last decade
 – Retention by SAS being better understood & limits are deservedly being pushed
 – ESS has come a long way to single trip installation with zonal isolation
 – Many OHGP challenges overcome, wells longer than most of us interested in drilling can now be gravel packed (α/β, APS)
 – Zonal isolation, ICDs, intelligent completions

• Although some gaps do exist
Thank you for your attention.
Questions ?
Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation:

Click on: Section Evaluation