Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME
Unconventional Frac Jobs for Unconventional Reservoirs – What Should You Be Concerned About?

Jennifer L. Miskimins, Ph.D., P.E.
Barree & Associates
Outline of today’s presentation…

• Purpose
• Unconventional reservoirs
• Fluids and proppants
• Conductivity and clean-up
• Proppant transport
• Modeling
• Hydraulic fracturing for reservoir management
• Conclusions
WHY should you be concerned?

• Unconventional reservoirs (UCR’s) are just that - unconventional
• UCR’s are increasing forming our reserve/resource base around the world
• Extrapolation of conventional techniques and concepts to UCR’s is risky
 – Combination of considerations
Conventional vs. Unconventional

“Unconventional resources...accumulations that are pervasive throughout a large area...not significantly affected by hydrodynamic influences...require specialized extraction technology...”

SPE-PRMS, 2007

Holditch, 2001
Today’s presentation focuses on…

• Shale gas (is a “shale” a “shale”?)
 – Micro/nano-Darcy permeability (10^{-6} – 10^{-9})
 – High quartz or carbonate content (typically less than 20-30% clays)
 – High TOC?

• Shale (“liquids rich”) oil

• Tight gas
 – What is “tight”?
 – Micro-Darcy permeability
 – Fluvial, laterally discontinuous bodies; blanket sands
Fluid Systems

- “Slickwater”
 - Minimal polymer loading
 - Polyacrylamide friction reducers
 - 1 – 10 cp fluid system
 - Carrying capacity reduced
- Lighter loaded systems
- Must minimize damage due to the initial low permeability

\[F_{CD} = \frac{k_f w}{kX_f} \]
Lightweight/Smaller Proppants

- Use of lower viscosity fluids = difficult to carry high proppant concentrations
- *Velocity* is the transport mechanism, not viscosity
- Function of fracture width, Reynolds numbers, densities of proppants and fluids, diameters of proppants
- 100 mesh, 30/50, and 40/70 sizes common
Conductivity and Clean-up

- Fracture conductivity is still critical!!
- Pack width determined by
 - Proppant concentration
 - Closure stress
 - Filter-cake and embedment
- Pack permeability determined by
 - Proppant size and strength
 - Packing and porosity
 - Regained permeability and gel clean-up
 - Non-Darcy and multiphase flow
Cleanup and Load Recovery is Affected by Gravity, Viscous, and Capillary Forces

Flow downward, co-current at any rate, assisted by gravity. Lower Sw, better recovery and gas perm.

Possible water coning around well causing further damage?

Flow upward, co-current at high rates, counter-current at low rates, hindered by gravity.

Higher Sw, poor load recovery, and low gas perm.
Traditional Prop Transport

- Suspended proppant slurry (uniform concentration)
- Clean pad fluid to create \(w = 3-6x_d \)
- Frac height (assumed to be constant)
- Fracture half-length
- Settled sand bank
Particle Transport

(From Patankar, 2002 and Kern, Perkins, and Wyant, 1959)
Example 1 – Bank Placement

0:08 sec

0:35 sec

0:58 sec

1:26 sec

Courtesy of Stimlab
Example 2 – Erosion of Bank

Courtesy of Stimlab
Modeling

• Remember that fracturing is always the *path of least resistance*
• De-coupling; vertical resistance (layers; laminations)
• Breakdown considerations in horizontal wells
Containment by Shear Decoupling

Coupled System

Decoupled System
Laboratory experiments – laminated block before hydraulic fracturing (28 cm X 28 cm X 48 cm)

After hydraulic fracturing – notice the complexity for this “simple” system

Athavale and Miskimins, 2008
Near-Well Stresses In Rotated 3D Space

- Vertical far-field Stress
- Max Horizontal far-field Stress
- Min Horizontal far-field Stress
- Axial Stress
- Radial Stress
- Tangential Near-Well Stress
Tangential Stress Distribution Around a Horizontal Well

The wellbore acts as a tunnel arch: Vertical stress is transmitted to the sides of the hole.

- $S_1 = 6000$
- $S_2 = 6000$
- $S_3 = 4200$
- Inc$S_1 = 0$
- Az$SH = 70$
- Azi = 70
- Dev = 90
Breakdown Example
Reservoir Management/Development

• Reservoir characterization
• Well spacing
 – 10-20 acres (4-8 hectares)
• Stage/cluster spacing
• Need to maximize contact area
 – Low permeability
 – Minimal drainage area
• Re-treatments
Reservoir Characterization

- Diagnostic injection tests
 - Leak-off behavior
 - Presence of natural fractures
 - Reservoir pressure
 - Permeability
 - Process zone stresses
C.I. = 0.1 psi/ft

Miskimins, 2000
1. Low rate to fill well and break down (t_0)
2. Hold constant max rate for 3-5 minutes
3. Step down to 75% then 50% of max rate, 10-15 seconds for each step
4. Shut in (for ISIP) and isolate gauge (t_p)
5. Record falloff as long as practical ($t>t_p$)

Barree, et al., 2014
Reservoir Management/Development

• Reservoir characterization
• Well spacing
 – 10-20 acres (4-8 hectares)
• Stage/cluster spacing
• Need to maximize contact area
 – Low permeability
 – Minimal drainage area
• Re-treatments
Body types penetrated as a function of well-spacing densities

Modified from Anderson, 2004
“Layer-cake” Reservoir

From Cuba, et al, 2013
“Layer-cake” Model Results

From Cuba, et al, 2013
Detailed Reservoir, Well A

From Cuba, et al, 2013
Well A - Rock Properties

- Porosity
- Permeability (md)
- Poisson’s ratio
- Young’s modulus (psi)
Detailed Reservoir, Well A

From Cuba, et al, 2013
Reservoir Management/Development

- Reservoir characterization
- Well spacing
 - 10-20 acres (4-8 hectares)
- Stage/cluster spacing
- Need to maximize contact area
 - Low permeability
 - Minimal drainage area
- Re-treatments
Cluster Spacing Optimization
Stress Shadowing of Clusters
Reservoir Management/Development

- Reservoir characterization
- Well spacing
 - 10-20 acres (4-8 hectares)
- Stage/cluster spacing
- Need to maximize contact area
 - Low permeability
 - Minimal drainage area
- Re-treatments
Piceance Basin, Western Colorado, USA
“S-Curve” Development

From www.csug.ca, 2010
Pad Development
Centralized fracturing equipment location

Multiple well pads (16 wells per pad)

Large diameter, welded surface lines

From Miskimins, 2009
Reservoir Management/Development

- Reservoir characterization
- Well spacing
 - 10-20 acres (4-8 hectares)
- Stage/cluster spacing
- Need to maximize contact area
 - Low permeability
 - Minimal drainage area
- Re-treatments
Reorientation/Retreatment??

Fracture Reorientation

Initial Fracture

Casing/Wellbore

Depleted Reservoir

Second Fracture

North

Courtesy Devon Energy
Conclusions

• Hydraulic fracturing for UCR’s requires combinations of considerations

• UCR’s represent a wide variety of reservoir types and designs must address these differences
 – Materials, complexity, reservoir management

• The learning curve can be shortened by studying other successful applications
Thank you for your time!
Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation

http://www.spe.org/dl/