Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME
Monetizing Natural Gas by Optimizing Transport

Xiuli Wang
Minerva Engineering Inc
World Natural Gas

Price inequality

![Price of Natural Gas Chart]

- Asia
- Europe
- USA
- Russia

$20 / MMBtu

$20

$15

$10

$5

$0
Agenda

• Background information on natural gas
 – Demand
 – Resources
• Transportation means
• Natural gas transportation optimization
Future Demand of Natural Gas

Global: 1.8%/yr
Non-OECD: 2.5%/yr
OECD: 0.9%/yr

Data source: IEA World Energy Outlook 29 May 2012
World Natural Gas Reserves vs. Ultimate Recovery

Share of World's Proven Gas Reserves, 187Tcm (6,609Tcf) 22%

Rest of World's Recoverable Gas, >662Tcm (23,390Tcf) 78%

Data source: EIA International Energy Outlook, 2010
Who Has the Natural Gas?

Data source: BP, 2013

<table>
<thead>
<tr>
<th>Country</th>
<th>Proved Reserves, Tcf</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iran</td>
<td>1186.8</td>
<td>18.0%</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>1162.1</td>
<td>17.6%</td>
</tr>
<tr>
<td>Qatar</td>
<td>884.8</td>
<td>13.4%</td>
</tr>
<tr>
<td>Turkmenistan</td>
<td>617.9</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>299.9</td>
<td></td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>290.7</td>
<td></td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>Venezuela</td>
<td>196.3</td>
<td></td>
</tr>
<tr>
<td>Nigeria</td>
<td>181.9</td>
<td></td>
</tr>
<tr>
<td>Algeria</td>
<td>159</td>
<td></td>
</tr>
</tbody>
</table>
Top Ten Gas Production/Consumption Countries

2012 Production, Tcf/yr

- US: 24.0
- Russian Federation: 20.9
- Iran: 5.7
- Qatar: 5.5
- Canada: 5.5
- Norway: 4.0
- China: 3.8
- Saudi Arabia: 3.6
- Algeria: 2.9
- Indonesia: 2.5

2012 Consumption, Tcf/yr

- US: 25.4
- Russian Federation: 14.7
- Iran: 5.5
- China: 5.1
- Japan: 4.1
- Saudi Arabia: 3.6
- Canada: 3.5
- Mexico: 2.9
- United Kingdom: 2.8
- Germany: 2.6
Stranded Gas

Data Source: IHS, EIA, and IEA, 2011
Natural Gas Transportation Modes

• Compression
 – Pipeline: most onland
 – Compressed natural gas (CNG)

• Convert gas to liquid
 – Liquefied natural gas (LNG)
 – Gas-to-liquids (GTL)

Key for transportation: reduce gas volume economically
2012 World Major Gas Trade Movements
in Billion Cubic Meters

BP, 2013

(~32%)

(~68%)
Offshore Pipelines

Source: www.nord-stream.com
Offshore Pipeline Examples

<table>
<thead>
<tr>
<th>Pipeline Name</th>
<th>Greenstream</th>
<th>Nord Stream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>2003</td>
<td>2012</td>
</tr>
<tr>
<td>Route</td>
<td>Libya to Italy through Mediterranean Sea</td>
<td>Russia to Europe through the Baltic Sea</td>
</tr>
<tr>
<td>Maximum Water Depth</td>
<td>3,698 ft (or 1,127 m)</td>
<td>689 ft (or 210 m)</td>
</tr>
<tr>
<td>Pipe Length</td>
<td>330 mi (or 531 km)</td>
<td>760 mi (or 1,224 km)</td>
</tr>
<tr>
<td>Pipe Diameter, inches</td>
<td>32</td>
<td>48</td>
</tr>
<tr>
<td>Lines</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Capacity/yr/Line</td>
<td>283 Bcf (or 8 Bcm)</td>
<td>971 Bcf (or 27.5 Bcm)</td>
</tr>
<tr>
<td>Total Cost, Billion $</td>
<td>6.6</td>
<td>11.5</td>
</tr>
<tr>
<td>Cost per Mile, MM $/mile</td>
<td>20</td>
<td>7.6</td>
</tr>
</tbody>
</table>

Data source: ENI, Nord Stream, Gazprom
Liquefied Natural Gas (LNG)

• Volume reduction ~600:1
 – By liquefaction @ -162° C (-260° F), ~1 atm
• Development since 1960s
• Capital investments:
 – Liquefaction and regasification terminals (~60%)
 – LNG ships (~40%)
• Energy-intensive
 – Energy-efficiency improving
Why Transport Natural Gas?

Data source: BP, 2013
Before and after earthquake (March 2011):
- LNG import quantity jumped 26%.
- Price: $550/t in 2010, jumped to >$850/t ($17.5/MMBtu) in 2012.
#4 LNG Consumer - China

- Average growth rate:
 - Production: 11.8%. **Consumption: 17.5%**

Wang et al., 2014
2012: 12% of the world total gas trades, 32% LNG movements. LNG: 63% to Asia Pacific. 29% to Europe and Eurasia. Rest: 8%.
#3 LNG Supplier - Australia

AUSTRALIA TO LEAD LNG FUTURE
BY MICHAEL J. ECONOMIDES AND XIULI WANG
Facts

- #13 in natural gas reserves (133 Tcf) in the world.
- #3 in exporting LNG (0.99 Tcf in 2012) after Qatar and Malaysia. Major buyers: China, Japan, South Korea.
- By 2017: LNG export capacity: 3 Tcf/yr

Industry prediction: **#1 LNG exporter by 2020.**
New Player in LNG – U.S.

U.S. LNG Export A Reality

US LNG?
LNG Cost Example

- Cost of delivered LNG from Sabine Pass to Europe/Americas & Asia = $8 - $10 / MMBtu.

<table>
<thead>
<tr>
<th></th>
<th>Europe/Americas</th>
<th>Asia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Henry Hub</td>
<td>$4.00</td>
<td>$4.00</td>
</tr>
<tr>
<td>Capacity Charge</td>
<td>2.50</td>
<td>2.50</td>
</tr>
<tr>
<td>Shipping</td>
<td>1.00</td>
<td>2.80</td>
</tr>
<tr>
<td>Fuel/Basis</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>Delivered Cost</td>
<td>$8.10</td>
<td>$9.90</td>
</tr>
</tbody>
</table>

Data source: Cheniere, February 2012
New Players in LNG - Israel and Cyprus

(17-20 Tcf)
New Player in LNG - Mozambique
Compressed Natural Gas (CNG)

- Volume reduction ~200:1
 - At 200 atm (3,000 psi), ambient temperature
 - At 140 atm (2,000 psi), -20 °C (~0 °F)

- Capital investment example:
 - For 2.8 MMcm/d (100 MMscf/d), 100 miles, capital cost: $250 million, tariff: $3.2/MMBtu.
New Generation of CNG with Composite Containment
New Efficient and Scalable Ship Design

- Composite material – 60% lighter than steel and much stronger.
- Containment - larger diameter and at least twice as much pressure as metal container. Shrinkage: ~400:1.
- Higher ship design efficiency.
Containment System Capable of Carrying Raw Gas

- Liner: Anti-corrosion coating – handle raw gas with H$_2$S.
- Opportunities:
 - Monetize stranded gas – midstream.
 - Enhance oil production through raw gas disposal – upstream.
Gas-to-Liquids (GTL)

- Volume reduction: >700:1
- Requires large capital investments
- Qatar: major player
- Likely to account for small percentage of natural gas consumed
Offshore Natural Gas Transport Optimization
Conclusions

- Gas Demand Projection to 2035: sharply elevated.
- Monetize stranded gas: transportation optimization is the key.
- Pipelines and LNG: continue to grow and play a vital role.
- New generation of CNG: allow the gathering raw gas from offshore location.
Questions?
Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation

http://www.spe.org/dl/