Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME
Acid Stimulation Challenges and Solutions in Deeper Limestone Reservoirs

Gino Di Lullo

Superior Energy

Society of Petroleum Engineers
Distinguished Lecturer Program
www.spe.org/dl
Overview

• Legacy
• Challenges
• Solutions
• Case History
• Conclusions
Legacy - Actual Stimulation Methods

- Matrix acidizing
- Fracture acidizing
- Closed fracture acidizing
- Competing technology: Horizontal wells
- CTU acidizing
- Acid Constructed Laterals

All Acid Jobs in Carbonates are Successful !!!
But few were Optimally Designed !!!
Legacy - Carbonate Matrix Acidizing

- Radial injection of reactive fluids into the reservoir matrix at below fracturing pressure to dissolve the rock and or mud cake to improve production.

- Removing near wellbore damage
- Enlarging & interconnecting pores
- Increasing original permeability

Source SPE 82260
Legacy – Retarded versus Strong Acid – Radial versus Wormhole

Radial Penetration Versus WormHole
Limestone reacted with 15% HCl

Source SPE 82260
Leaving Path of Increased Permeability- Conductivity

After closure caused by differential etching
Legacy – Acid Fracture Design Criteria

Productivity Ratio versus Dimensionless Conductivity and Penetration Ratios (Square Reservoir)

- After Emulsified Acid- Most Retarded
- After XL Acid-Best Leakoff Control -Cw
- After Gelled – No retardation, Leakoff -Cv
Unrealistic Conductivity Prediction

High Rate Bullheaded Acid & Limited Entry - In a North Sea Field Transient Analyses indicated a 30 ft length average in high leak-off areas while 150 ft average Fracture length in low leak off areas for similar designs.

<table>
<thead>
<tr>
<th>Fract Length Xf ft</th>
<th>Vert. fract. Jvf / Jv</th>
<th>Skin S</th>
<th>Jv/Jv</th>
<th>fwe</th>
<th>fwe/Xf</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>2.07</td>
<td>-4.92</td>
<td>2.75</td>
<td>45.5</td>
<td>.90</td>
</tr>
<tr>
<td>100</td>
<td>2.54</td>
<td>-5.65</td>
<td>3.71</td>
<td>94</td>
<td>.94</td>
</tr>
<tr>
<td>200</td>
<td>3.28</td>
<td>-6.35</td>
<td>5.58</td>
<td>187</td>
<td>.945</td>
</tr>
<tr>
<td>400</td>
<td>4.66</td>
<td>-7.05</td>
<td>10.7</td>
<td>380</td>
<td>.95</td>
</tr>
</tbody>
</table>

20 Acre spacing r_e = 527' \quad f_w = 0.33'
Formation thickness = 20'
Legacy - Vertical Well with Acid built Laterals

Guaranteed Penetration, total accumulated Length the longer the better

Source SPE 103333
Legacy - Multiple Laterals Mara Field

DM-163

CTU Acid Job
Acid Tunneling

BBLs/DAY

04-06 04-06 05-06 06-06 07-06

Water
Oil

Source SPE 103333
Legacy- Treatment Comparison

Carbonate Stimulation Treatment Comparison
400 Gal/ft with 15% HCl

Productivity Index

Stimulated Length, ft

Source SPE 103333
Legacy – Design based on History

Caution: What works for one well ... doesn’t necessarily work for all wells!!!
Challenge in Deeper Carbonate Stimulation

**EFFECT OF TEMPERATURE ON REACTION RATE OF
CALCIUM CARBONATE (MARBLE) AND 15% HYDROCHLORIC
ACID. TEST CONDITIONS: 1000psi PRESSURE, 3–5min.
DURATION, 1:4 AREA–VOLUME RATIO.**
Challenge in Deeper Carbonate Stimulation

Graph showing the rate of 15% HCl spending for varying area-volume ratios (80°F, 1000psi)
Challenges in Matrix – Stimulation

• Divert & Penetrate
 • Treating the complete zone interval equally
 • Limiting-Retarding acid enough to overcome higher temperature & Area : Volume ratio

• Obtaining designed radial penetration or optimized long wormholes
Challenges in Fracture-Stimulation

- Obtain Long Fractures with Reactive Fluids
- Formation Collapse after Closure
- Poor differential-etching
- Lack of fracture Conductivity
Challenge - Replace HCl in Deep Hot Wells

- HCl a Gas not an Acid
 - Volatile, Fumes
- Availability at ~38%
 - Transport, storage
- Carbonate Solubility
 - Chlorides by product
- Corrosive
 - Expensive Inhibition
- Cheap
 - Forms Precipitates
 - Sludge
 - Iron precipitates

1 Barrel 15% HCl dissolves only 1 Gallon of Carbonate
Challenge - Replacing HCl

<table>
<thead>
<tr>
<th>Acid</th>
<th>pK5</th>
<th>pk4</th>
<th>pK3</th>
<th>pK2</th>
<th>pk1</th>
<th>Log K 1:1 Complex</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>MSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.92</td>
<td></td>
</tr>
<tr>
<td>NTA</td>
<td>9.7</td>
<td>2.5</td>
<td>1.8</td>
<td>1.0</td>
<td></td>
<td>6.40</td>
</tr>
<tr>
<td>DPTA</td>
<td>10.5</td>
<td>8.5</td>
<td>4.3</td>
<td>2.6</td>
<td>1.8</td>
<td>10.80</td>
</tr>
<tr>
<td>EDTA</td>
<td>10.2</td>
<td>6.2</td>
<td>2.7</td>
<td>2.0</td>
<td>1.5</td>
<td>10.70</td>
</tr>
<tr>
<td>Phosphoric</td>
<td>12.3</td>
<td>7.2</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEDTA</td>
<td>9.8</td>
<td>5.4</td>
<td>2.6</td>
<td></td>
<td></td>
<td>8.40</td>
</tr>
<tr>
<td>HEIDA</td>
<td>8.7</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td>4.80</td>
</tr>
<tr>
<td>Citric</td>
<td>5.7</td>
<td>4.4</td>
<td>2.9</td>
<td></td>
<td></td>
<td>3.50</td>
</tr>
<tr>
<td>Acetic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.8</td>
<td>0.53</td>
</tr>
<tr>
<td>Carbonic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.4</td>
<td></td>
</tr>
</tbody>
</table>

Acid-Carbonate Effervescent Reaction & Hard to Control
Challenge - Increasing rate to obtain Penetration

- Matrix jobs; increasing the rate help in getting deeper in the formation up to a point
- Fracture jobs; increasing the rate improve leak-off, also increase acid diffusivity but not necessarily differential etching

Source SPE Journal March 98
Challenge - Picking up the right Acid

\[\pi \frac{dlk}{Q} \]

Da = \frac{\pi dlk}{Q}

Source: SPE Journal March 98
Solution - Viscous-elastic Surfactants

Surfactant monomers

Increase concentration

Above critical micelle conc.

Micelle

Increase concentration

Add certain additives

Worm-like micelle

Surfactant Molecule

Hydrophilic head

Hydrophobic tail

Surfactant molecule contacting oil, water, etc.

Broken upon concentration

3D Gel

Above overlap concentration
Solution - Viscous-elastic Surfactants

LEAKOFF ACID VISCOSITY INCREASE AS CALCIUM CHLORIDE IS FORMED DURING CARBONATE DISSOLUTION
Case History – Typical Treatment
Brazil Post-Salt

Source OTC 22417
Case History – Typical Treatment

<table>
<thead>
<tr>
<th>Each Stage Per zone 170 Bbl</th>
<th>Rate BPM</th>
<th>Fluid</th>
<th>Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-flush</td>
<td>0.5</td>
<td>HCl-Solvent</td>
<td>15%</td>
</tr>
<tr>
<td>Treatment</td>
<td>0.5</td>
<td>HCl</td>
<td>15%</td>
</tr>
<tr>
<td>Diverter</td>
<td>0.5</td>
<td>Viscoelastic Pill</td>
<td>15%</td>
</tr>
<tr>
<td>Treatment</td>
<td>0.5</td>
<td>HCl</td>
<td>15%</td>
</tr>
<tr>
<td>OverFlush</td>
<td>0.5</td>
<td>Solvent</td>
<td>0</td>
</tr>
<tr>
<td>Flush</td>
<td>0.5</td>
<td>Brine</td>
<td>0</td>
</tr>
</tbody>
</table>

- Expected Production 5 to 6 folds
- Equivalent to 12 gpt (gallons per foot)
- Post Job DST transient result (~ 5.9) skin
- Stabilized Production ~ 2 folds

Source OTC 22417
Case History – Typical Frac with Organic Acid in Venezuela

Source SPE 82211
Case History – Typical Frac with Organic Acid in Venezuela

Etched width Vs Frac Length

- 13/9% Acetic/Formic increased volume to match dissolving power of 15% HCl
- 15% HCl

Acid Dissociation constant and strength

<table>
<thead>
<tr>
<th>Acid Type</th>
<th>Diss. Constant K_a (mol/l)</th>
<th>Strength of 1 mol/l</th>
<th>pH</th>
<th>$[H^+]$ mol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl</td>
<td>>>1</td>
<td></td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>Formic</td>
<td>1.8E-4</td>
<td>1.8</td>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>Acetic</td>
<td>1.8E-5</td>
<td>2.3</td>
<td>0.005</td>
<td></td>
</tr>
</tbody>
</table>

Pre & Post Job Production Results

<table>
<thead>
<tr>
<th>Well</th>
<th>Net Pay ft</th>
<th>Prod Before bopd</th>
<th>Prod. After bopd</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>14</td>
<td>0</td>
<td>1252</td>
</tr>
<tr>
<td>B</td>
<td>22</td>
<td>350</td>
<td>1717</td>
</tr>
<tr>
<td>C</td>
<td>17</td>
<td>0</td>
<td>1940</td>
</tr>
<tr>
<td>D</td>
<td>26</td>
<td>1000</td>
<td>3152</td>
</tr>
<tr>
<td>E</td>
<td>47</td>
<td>1525</td>
<td>4290</td>
</tr>
<tr>
<td>F</td>
<td>22</td>
<td>0</td>
<td>260</td>
</tr>
<tr>
<td>G</td>
<td>16</td>
<td>450</td>
<td>2005</td>
</tr>
<tr>
<td>H</td>
<td>9</td>
<td>0</td>
<td>350</td>
</tr>
<tr>
<td>I</td>
<td>45</td>
<td>0</td>
<td>2485</td>
</tr>
<tr>
<td>J</td>
<td>25</td>
<td>0</td>
<td>882</td>
</tr>
<tr>
<td>K</td>
<td>28</td>
<td>294</td>
<td>2162</td>
</tr>
</tbody>
</table>

Total: 3619 / 20495

~ 700 gal/ft of acid
Alternative Solution – Treating Acid Gelled with Viscoelastic Surfactant

- Bullheaded Acid Treatment

- Continuous use of VS in HCl instead of Diverter Stage
 - Better Diversion, complete zone treatment
 - Better Fluid Loss Control, Longer Fractures
 - Etching pending on Formation’s nature

- No Chemical Acid retardation
- VS Works with HCl, not optimized for other acids
- Still not Optimum!!
Alternative Solution – Treatment
Brazil Pre & Post Salt Reservoirs

- Core Flow Test indicate
 - No worm holes
 - Pore enlargement
 - Homogeneous acid distribution
 - Oil Permeability increased 500 times
 - Acid 10% HCl with 6% VE surfactant
Alternative Solution – Treatment Brazil Pre & Post Salt Reservoirs

Always the bottom zones are pre-treated via CTU with gelled acid and a pulsing jetting device to guarantee bullheaded acid flow reaching the end.

Source SPE 165089
Case History 1 - Vertical Well

- 2450 Bbl 15% Acid with 6% Surfactant
- Equivalent to ~156 Gal/ft
- 1400 Bio Ball Sealers after 490 Bbl
- Pump rate increased to 20 BPM

<table>
<thead>
<tr>
<th>Well Type</th>
<th>Oil Producer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well Inclination</td>
<td>Vertical</td>
</tr>
<tr>
<td>Rig Type</td>
<td>Semi-Submersible</td>
</tr>
<tr>
<td>Water Depth</td>
<td>4,690 ft</td>
</tr>
<tr>
<td>Last Casing</td>
<td>7”- 32 lbf/ft</td>
</tr>
<tr>
<td>Perforated Interval</td>
<td>14,268 – 14,924 ft</td>
</tr>
<tr>
<td>Perforation Length</td>
<td>656 ft</td>
</tr>
<tr>
<td>Formation</td>
<td>Pre-Salt Carbonate</td>
</tr>
<tr>
<td>Reservoir Permeability</td>
<td>23 mD (14,268 – 14,439 ft)</td>
</tr>
<tr>
<td>Reservoir Pressure</td>
<td>6854 psi</td>
</tr>
<tr>
<td>Reservoir Temperature</td>
<td>255 °F @ 14,353 ft</td>
</tr>
<tr>
<td>Oil Viscosity</td>
<td>0.7 cP</td>
</tr>
<tr>
<td>Oil Grade</td>
<td>31° API</td>
</tr>
<tr>
<td>Workstring</td>
<td>Production String</td>
</tr>
</tbody>
</table>

Source SPE 165089
Case History 2 - Vertical Well

- 2000 Bbl 15% Acid with 6% Surfactant
- Equivalent to ~ 270 Gal/ft
- 1800 Bio Ball Sealers after 200 Bbl
- Pump rate increased to 15 Bpm
- Average Production 6 months test - 12578 BOPD

Source SPE 165089
Case History 3 - Horizontal Well

2335 Bbl 17% HCl with 6% Surfactant
Equivalent to ~ 20 Gal/ft
Pump rate oscillated from 12 to 17 BPM

Source SPE 165089
Conclusions – Deeper Limestone Acidizing Quantum Steps & or Evolution

- Dissolve Rock with acids - higher concentration, organic Acids, Sequestering agents
 - GLDA, Citric Acid
- Alternating pad-acid stages - Use Viscoelastic Surfactants
- Cleaner X-Link Acids - less damaging polymers
- Gelled Organic acids-
 - (Acetic, Formic, EDTA, HEDTA, etc ..)
Conclusions - Everything is Better But we still need to improve!

• **Matrix Treatments**
 • Acid concentration & retardation should be Ramped inversely proportional to radial flow area
 • Acid must be stronger, in situ gelled and retarded
 • Using Ester as pre-flushes is an interesting alternative

• **Acid Fracturing Treatments**
 • Spearhead or Pads should be highly retarded In Situ Acids
 • Avoid Acid dilution - Water, Oils, Gases (Foams & Emulsions)
 • Ramp Acid Retardation

• **Lateral Tunneling**
 • Increase Laterals per elevation
 • Increase Length & Optimize Lateral dissolved diameter
 • New Tool, faster and also applicable in Cased Wells
Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation:

Click on: Section Evaluation