Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME

Society of Petroleum Engineers
Distinguished Lecturer Program
www.spe.org/dl
Diamond – A Driller’s Best Friend

Terry Matthias

Society of Petroleum Engineers
Distinguished Lecturer Program
www.spe.org/dl
Overview

Copper Nickel

Cobalt

Tungsten Carbide

Natural Diamond

Synthetic Diamond

PDC

Natural Diamond Bits

PDC Bits

Performance
Early Use of Diamond

- Mists of Time
 - Adornment
 - Stoneworkers
 - Talisman (Lucky Charm)
- From 1000 A.D.
 - Cleave & later polish diamonds

[Images of diamond and jewelry]
What is diamond?

• 1700’s New science of chemistry
 – Break down materials with fire – couldn’t with diamond

• 1772 Antoine Laurent Lavoisier
 – Magnifying glass to burn diamond

• 1797 Smithson Tennant
 – Diamond = Graphite
Early attempts to make diamond

- 1772 – 1870 Temperature
 - Attempts to grow diamond crystals by evaporation of carbon rich solutions

- 1870 Diamonds found South Africa

- 1870 – 1910 Temperature and Pressure
 - Iron tubes, electric arcs, explosives, high velocities

All Failed
Structure

- 1912 Crystallography

Graphite

Diamond
High Pressure

- Percy Bridgman

<table>
<thead>
<tr>
<th>Year</th>
<th>Pressure (atm)</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>2,500</td>
<td>Cell leakage</td>
</tr>
<tr>
<td>1905</td>
<td>7,000</td>
<td>Screw press</td>
</tr>
<tr>
<td>1910</td>
<td>20,000</td>
<td>Hydraulic press</td>
</tr>
<tr>
<td>1935</td>
<td>50,000</td>
<td>Opposed tapered steel anvils</td>
</tr>
<tr>
<td>1940</td>
<td>70,000</td>
<td>Opposed tapered carbide anvils</td>
</tr>
</tbody>
</table>

Courtesy Wikipedia
High Pressure Carbide

Cobalt Cemented Tungsten Carbide
1938

Thermodynamics predicts

Phase Diagram

High Pressure & High Temperature

Early 1940’s GE & Norton engage Bridgman

High pressure & high temperature tests to establish conditions diamond not destroyed

Conclusion

$>1,000 ^\circ C \& >50,000 \text{ atm}$

to make diamond

10
Natural Diamond Bits

• Diamond retention
 – Cannot wet
 – Mechanically lock
Synthetic Diamond

- 1951
 - Project Superpressure at General Electric

- 1954
 - 16th December First diamond made
 - Repeated 20 times in next 2 weeks
Man-Made® Diamond

1957 – 1977
Synthetic Diamond Grit
- Improving control of process for shape & properties
- Averaged a new product every year
- Grinding, sawing, drilling, lapping & polishing non ferrous materials

® GE registered trademark
PCD

• Large single diamond crystals cleave

• Carbonado
 – Grains of diamond, diamond-to-diamond bonded together, a natural polycrystalline diamond

• 1973 Compax® φ8mm x 3.5mm
 – GE mix cobalt & fine diamond
 – Press at 60,000 atm & 1400°C

©GE registered trademark
First PDC Bits

- 1974 - 1st Bit runs
 - USA
 - Isle of Wight, England
Cutter & Bit Development

1973
1976
1978
1979
1980
1982
1986
PDC Development for Drill Bits

Compromise Between

Hardness & Durability

Hard – Wear resistant but brittle

Durable – Tough but soft
PDC Development for Drill Bits

• Micron diamond size
 – Mono modal - Single size of diamond
 • Diamond bonds/unit volume
 – Multi modal - Mix of 2, 3 or 4 sizes
 • Diamond bonds/unit volume
 &
 • Diamond volume
PDC Development for Drill Bits

- Diameters

- Polished diamond faces
PDC Development for Drill Bits

- Diamond layer thickness
 - From $\frac{1}{2}$ mm to 2-4mm
- Chamfered/Bevelled Edge
- Internal stresses - Interfaces
 - Flat to shaped – Claw, Star, Iris etc.

Bit Design
Thermal Stability

Removal of catalyst from surface of PCD

- **1st Generation (SPE 79797)**
 - +40% footage
 - +40% rate of penetration

- **2nd Generation (SPE 102067)**
 - +43% footage
 - +26% rate of penetration
Drill Bit Market

Source: Spears

![Drill Bit Market Bar Chart](#)
The Future for PDC and PDC Bits

• Diamond Sizes
 – Sub-micron 250nm – 1000nm
 – Nano 1nm – 250nm

• Diamond Mixes
 – Mono or multi modal sub-micron and/or nano
 – Multimodal with micron
The Future for PDC and PDC Bits

• Challenges of Catalyst Removal
 – Islands
 – Dissolved

• Future Direction
 – Deeper
 – Smaller pathways
 – Implications on time to leach
The Future for PDC and PDC Bits

• Other catalysts
 – Rare earth elements
• Catalyst free
The Future for PDC and PDC Bits

• Pressing Equipment
 – Higher pressures and/or temperatures
 – Pressing volume
 – Cycle time

Implications for PDC costs
Conclusions

• PDC is a very reliable, high performance cutting tool.
• Thermally stable PDC was the biggest drilling cost reducer
• The PDC bit is now the predominant drilling product.
• With your help
 – New generations of PDC for even higher bit performance
Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation:

Click on: Section Evaluation

Society of Petroleum Engineers
Distinguished Lecturer Program
www.spe.org/dl