Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME
Moving the Frontiers in Artificial Lift Technology in Mature Field Operations

Siegfried Müessig
Rohölaufsuchungs - AG,
Vienna, Austria
Agenda

• Introduction
• Challenges in mature field operations
• Examples of smart technical solutions
• Intelligent material selection
• Economic evaluation
• Conclusion
Introduction

• Mature field operations will become an increasingly important theme for the future.
• Everyone in the E&P Industry will be faced with the challenges of delivering highest possible recovery factors in difficult environments.
• No single simple solution will solve the problems
• A basket of mutual supportive technologies is necessary
Challenges in Mature Field Operations

• Small margins and limited budget
• Production decline in tail-end phase = economic Constraints
• High water cut = high lifting & water treatment costs
• Corrosion (high water cut with CO₂) = short meantime between failures & loss of integrity
• Erosion (sand production) = short meantime between failures & loss of integrity
Principle: Making the Most of What You Have
Guideline: Reduce remedial workovers to free more budget for production enhancement measures

• Smart Technology
 • Advanced draw-down control
 • Electronic Rod Rotator

• Intelligent Material Selection
 • Corrosion Control
 • Sand Control
 • Abrasion Control
 • Poly-lined Tubing
 • Sinker Bars
 • Spray-metal Couplings
SELECTION OF SMART TECHNICAL SOLUTIONS
Continuous Fluid Level Measurement

• Based on radar technology
• Fluid level identification by signal pattern analysis (including frequency analysis)
• Easy to install at the wellhead without workover
• Relative accuracy of measurement +/- 3 meter (10 ft) (at one minute intervals)
• Very effective in combination with Variable Speed Drives
Fluid Level Measurement, Production Optimisation

- Prevents pumps from running dry → increases run life
- Pumps operated safely with maximum possible draw-down
- Accelerated production
- Increased ultimate recovery

Response on change of ESP speed

![Graph showing VSD Frequency and Measured fluid level over time.](image)
Further Applications

- Reservoir Engineering
 - Pressure build-up survey

- Production Operations
 - Condition monitoring of downhole equipment using noise pattern
 - Detection of abnormal conditions with frequency analysis (valve malfunction, tubing leak, rod buckling, etc.)
Electronically Controlled Rod Rotator

• Measures load and assures rod rotation when side wall force due to buckling is minimum

• Rotates only when necessary, thus minimizing number of rotations

• Thus reduces wear on tubing and rods
INTELLIGENT MATERIAL SELECTION
Corrosion Inhibitor Selection & Implementation

Problem
- Corrosion, high water-cut with CO₂ in production operations

Field Data
- Produced media
- Materials in use
- Flow conditions

Candidate Selection
- Input field data
- 3-4 Products by service companies
- Pricing and dosage

Screening Testing
- Verify performance with lab tests (up to 10 test runs)

Final Testing
- Field test in actual environment

Final selection
- Based on commercial and operational results, product, cost, dosage
Corrosion Rate Survey Results (Field)

Water Cut: 97%

CO₂ Concentration up to 10%

Time to result: 3 – 4 Months per Well

Corrosion Rate < 0.005 mm/yr (0.02 mpy)

Zero Measure

CORROSION [mm/yr]
Erosion Control with Ceramic Sandscreens

- Unique material properties of SiC
 - Utmost resistance against erosion
 - Highly corrosion resistance
 - Lower density compared with steel (less weight)
 - Heat resistant up to 1800°C
 - High hardness
 - High stiffness

Stack of ceramic rings
Sand Screen for a North Sea Gas Producer

- The well was closed in since 1997 due to significant sand production
- Sand screen landed in nipple below production packer
- Set on production on February 2011, flowing well head pressure of 850 psi, gas rate of 6 MM scf/d, sand free, still producing with 2 MM scf/d with lower flowing pressure than ever
Reduction of Wear with Coated Sinker Bars

• Sinker Bars weigh the lower part of the rod string directly above the pump (more tension during „down stroke“). Buckling and Friction is thus minimised.

• Specially designed „super fine surface finish“ metal film on flexible centralisers, which further smoothen surface and reduces the loss of material

• The metal film is also used for couplings of the rod string.
Sinker Bars with Super Fine Finish Coating
Reduction of Wear with Specially Developed Polylined Tubing

Modified HDPE – Temperature up to 95° C

• Advantages:
 • Less paraffin precipitation due to better heat insulation
 • Less tendency for depositions due to smooth surface
 • Less abrasion due to less friction
 • Energy savings due to less friction (10 to 15%)
 • Re-use of used tubing
Poly-Lined Tubing

Comparison of EU J 55 with HDPE Liner

- **Status**: 14 06 2013
- **Installed since**: 2006-03-07
- **Polylined Tubing from**: 446 - 889 m
- **Additional Investment**: $ 4,000
- **Savings**: ca. 25 Workovers: $ 1,000,000
- **Average Meantime between Failure J 55 Plain**: 102 days

<table>
<thead>
<tr>
<th>Days</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2656</td>
<td>2656 Days</td>
</tr>
<tr>
<td>2500</td>
<td>Installed since 2006-03-07</td>
</tr>
<tr>
<td>1500</td>
<td>Polylined Tubing from 446 - 889 m</td>
</tr>
<tr>
<td>500</td>
<td>Additional Investment: $ 4,000</td>
</tr>
<tr>
<td>500</td>
<td>Savings: ca. 25 Workovers: $ 1,000,000</td>
</tr>
<tr>
<td>0</td>
<td>Average Meantime between Failure J 55 Plain: 102 days</td>
</tr>
</tbody>
</table>
ECONOMIC EVALUATION
Case Study: Operation Centre Zistersdorf

- Two fields in Operation since 1937
- Complex Geology along the major „Steinberg“ Fault
 - Numerous small fractures
 - Many unconsolidated formations
- Hydrocarbon bearing more than 1000m in „Neogen“
- 62 wells (of which 30 in production)
- Up to 10% CO2 in associated gas
- High Water Cut (ca. 95%)
Significant Increase of Equipment Lifetime with a Reduction of Repair Workovers

- 2005
 190 failures per 100 active wells

- 2012
 9 failures per 100 active wells

Theoretical time between failures 11.1 years
Significant Increase of Equipment Lifetime with a Reduction of Repair Workovers

Failure Statistics

MTBF = mean time between failure

MTBF 1 Yr.

MTBF 2 Yr.

MTBF 5 Yr.
Production Results until 2011

Metric Tons

-6.8%
+2.5%
-4.9%
4% 2006-2011
Production Forecast

- Case 1: Business as usual = Production decline 6.8%
- Case 2: Technology Implementation = Production decline 4%
Revenue vs. Expenditure 6.8% (base) vs 4%
Marginal Cost Analysis (6.8% versus 4% Decline)

Comparison Revenue vs. Expenditure

- Revenue 4%
- Expenditure 4%
- Revenue 6.8%
- Expenditure 6.8%

Assumptions:
- Oil Price + 2.5%/y
- OPEX + 2.5%/y

end of economic production 2009 (6.8%)
end of economic production 2023 (4%)
Conclusion: The Way to Success

• Challenge: Limited expectation of field lifetime

• Approach: Building a ‘Mature Field’ Competence Team to develop new solutions

• Process:
 • 1. Analysis of available technologies along the production chain
 • 2. Identification of advanced materials with exceptional lifetime in tough production environments
 • 3. Development of a stringent selection process for corrosion inhibition

• Results: Development of new technologies ‘fit for purpose’, modifications of existing technologies, use of new materials.
The value of an idea lies in the using of it.
Thomas A. Edison

THANK YOU FOR YOUR ATTENTION
Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation:

Click on: Section Evaluation