Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional support provided by AIME

Society of Petroleum Engineers
Distinguished Lecturer Program
www.spe.org/dl
Lost Circulation- A Challenge We Must Address

Salim Taoutaou

Schlumberger
Agenda

- Lost circulation definition
- Lost circulation risk identification
- Prevention and Mitigation
- Case Histories
- Ongoing Research
- Conclusion
The impact of Lost Circulation

- Lost circulation occurs in 25% of wells* worldwide
- Costly and time consuming
- Global footprint
- Impact on downhole Well Integrity and production

Type of Losses

<table>
<thead>
<tr>
<th>Seepage</th>
<th>Partial</th>
<th>Severe</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconsolidated Sand Sandstone, Silt formation</td>
<td>High permeable zones, small natural fractures; induced fractures</td>
<td>High unconsolidated zones, large natural fractures; induced fractures & vugs</td>
<td>High unconsolidated zones, large natural fractures; induced fractures & vugs</td>
</tr>
<tr>
<td>Loss Rate <10bbl/hr</td>
<td>Loss Rate 10-200bbl/hr</td>
<td>200-500bbl/hr</td>
<td>500 bbl/hr</td>
</tr>
</tbody>
</table>

- **Induced losses**: due to drilling practices (surge & swab) downhole conditions (depletion)
- **Natural fractures**: pre-existing fractures (carbonates)
Consequences of Loss Circulation

Drilling & Completion

- Mud loss to the formation
- Operational concerns
- Lost time and Money
- Compromise of well working envelop
- Reservoir damage

Well Integrity & Production

- Isolation not achieved
- Casing protection
- Remedial work
- Environmental impact (fluid migration)
- Production impairment
Lost Circulation in Numbers... An Example

- 37 wells drilled
- Loss of 6700 bbl of mud/well—250,000 bbl mud
- USD 29 million in mud cost
- USD 6 million in rig-time cost
- Average cost USD 940,000/well

A real waste of money!
Addressing Lost Circulation

- While drilling
- Casing running
- While cementing
- Post-cement placement

Prevention vs. Mitigation!
Addressing the Lost Circulation

Prevention vs. Mitigation!

<table>
<thead>
<tr>
<th>Losses</th>
<th>Prevention</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drilling</td>
<td>Casing Running</td>
</tr>
<tr>
<td>Induced</td>
<td>Managed pressure Drilling/Cementing</td>
<td>Special tools to manage Surge and swab (Auto fill up equipment)</td>
</tr>
<tr>
<td></td>
<td>Casing while Drilling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solid Expandable Tubulars</td>
<td></td>
</tr>
<tr>
<td>Natural Fractures</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prevention - Managed Pressure Drilling & Cementing

- Control annular pressure profile
- Control of surface backpressure
- Avoid influx and Loss Circulation

IPTC-17749-MS
Prevention- Casing While Drilling

- Simultaneously drilling and casing the well
- Vertical and directional wells
- Helps reduce the mud losses
Prevention - Expandable Tubulars

- Liner ran, cemented and expanded mechanically
- Temporary solution to cover the troublesome zone
- Cement testing considerations
Lost Circulation Characterization

Real Time Surface Data
- Weight-On-Bit (WOB)
- Pump Pressure
- Rotary Torque
- Flow-in/Flow-out Rate
- Depth Sensor
- Tank level
- Cuttings & Lithology

Real Time Downhole Data
- Annular Pressure While Drilling
- Formation resistivity
- Natural Gamma Ray
- Wellbore image
- Ultrasonic caliper
- Sonic
- Photoelectric Factor

Characterization

Decision tree

Models/Software
Lost Circulation Characterization

Lost Circulation Decision Tree

- **Seepage** (to 9.5 bbl/hr)
 - Drill ahead adding LCM
 - Pump LCM pill
 - Drill ahead if wellbore integrity is reestablished

- **Partial** (9.5 to 63 bbl/hr)
 - Reduce rheology and circulating rate (reduce ECD)
 - Treat losses
 - Pump plug-and-seal additive

- **Severe** (>63 bbl/hr)
 - Stop drilling
 - Check for static losses
 - Pump plug-and-seal additive

- **No returns** (dynamic)
 - Stop drilling
 - Discuss options with offsite experts
 - Pump LCM pill
 - Static losses
 - Run contingency liner casing

- **Static**
 - No returns: Drill ahead only with approval and only to find a competent casing seat
<table>
<thead>
<tr>
<th>Year</th>
<th>Dyke</th>
<th>Verga et al</th>
<th>Majidi</th>
<th>Lavrov</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996-97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lietard/Sanfillippo
- Bingham Plastic, model based on Darcy’s law, constant aperture
- Newtonian Fluids in non-deformable fracture, constant aperture, impermeable walls

Lavrov & Tronvoll
- Mud loss into a single isolated deformable fracture
- Fracture opening/closing
- Power Law Fluids

Shahri
- Effect of Natural Fracture geometry on fluid loss
- Yield Power Law/Herchel Bulkley

SPE 25022; 63266; 103564; 114630; 168123
New Generation Models

- Qualification: identify Loss Type and Loss Location using Surface Data
- Quantification: identify Natural Fractures attributes (aperture, number and spacing) based on primarily Mud Loss Data
- Placement: recommendation on the most suitable treatment.
New Generation Models - Example

Diagnostic and Characterization Results

Recommended Treatment
Laboratory Qualification

Plugging Efficiency Test Result

- Differential Pressure (psi)
- Filtrate Volume (ml)

Time (minutes):
- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Differential Pressure (psi):
- 0 50 100 150 200 250 300 350 400 450 500

Filtrate Volume (ml):
- 0 50 100 150 200 250 300 350 400 450 500
Solutions-Plugging mechanism

Leaf effect

- LCM is deposited at the mouth of the fracture
- Temporarily stops the losses

Wedging effect (stress caging)

- Different particle size distribution to reach the fracture tip
- Strengthens wellbore by redistributing the hoop stress

High Permeability

Block fracture with mud solids

Block fracture with sized particles

Increase the hoop stress
Mitigation- Fluids

- **Time activated**
 - Lost circulations gels

- **Temperature activated**
 - Acid soluble cement
 - Fibrous cellulose, crosslinking agents, and fibrous LC materials

- **Pressure activated**
 - Emulsion

- **Inert bridging material (Granular, Flaked, Fibrous)**
 - Fibers LC materials
 - Sized particulates
Engineered Treatment

- Engineered Treatment based on the characterization results
- Inert materials used in Treatment
- Solid package - any, available on the rig
- Can be pumped through the drilling assembly
- Compatible with the drilling and cementing fluids
Case History 1: Induced Fractures

Challenges

- Induced losses due to depletion
- 250-400 well drilled per year
- 2% success & 75 hours NPT
- Remedial jobs with Workover rig

Solution

- In depth Characterization
- 100bbls of Engineered treatment

Results

- Improved success rate 62%
- More than 48 wells treated
Case History 2: Natural Fractures

Challenge

- While drilling 8 ½” OH losses 150 bbl/hr at 17,448ft in a fractured limestone formation
- Drilling was stalled for 7 days total losses
- Conventional LCM solutions unsuccessful

Solution

- 70 bbl of 12.5 lbm/gal Engineered pill based on diagnostics/Characterization model
- Pill pumped through a side sub
Case History 2: Natural Fractures

Results

- Complete returns were observed
- Applied Squeeze pressure equivalent to the ECD expected during the drilling
- Section drilled to final depth without losses

<table>
<thead>
<tr>
<th>Well</th>
<th>Depth (ft)</th>
<th>Loss rate before treatment bbl/hr</th>
<th>Pill volume (bbl)</th>
<th>Loss rate after treatment bbl/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16448</td>
<td>150</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>16521</td>
<td>100</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>7875</td>
<td>Total</td>
<td>90</td>
<td>5</td>
</tr>
</tbody>
</table>

JOBS PERFORMED DURING DRILLING
A Glimpse at the future-
Ongoing Research

- Extensive experimental work has shown that filtercake blocks mouth of growing fracture,
- Filtercake prevents flow of wellbore fluid into fracture and inhibits hydraulic fracture growth
- Filtercake is self-healing, always present and easy to characterize

Patent EP 16305237.5; US patent 8215155; SPE 178799
Ongoing Research - Drilling Fluids

Fractures at around 10.4 MPa (1095 sec), 50% higher than A.

Effect of filtercake strength
Patent EP 16305237.5; US patent 8215155; SPE 178799

EFFECT OF CAKE THICKNESS
Borehole pressure v. pumping time for two small block tests using oil-based mud in sandstone
Ongoing Research-Cementing

- 71 well sections from four offshore areas
- 40 well sections with losses
- Losses occurrence & At what stage of well construction
90% of loss events initiated while running casing/liner or during pre-job circulation

Only 5% of losses initiated during cementing despite higher cementing ECD’s

If losses were severe or total, the cement reduced the loss rate in more than 50% of the cases

Cement was not able to reduce the loss rate when losses were partial or seepage
Conclusion

- Lost circulation is detrimental for the life of the well
- Use Managed Pressure Drilling, Casing While Drilling and Solid Expandable Tubulars to prevent the losses
- Use characterization software and engineered lost circulation treatments to mitigate the losses
- Continue research and collaboration efforts to bring better, easier and faster solutions
Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation. Visit SPE.org/dl