Enhancing Well-Work Efficiency With Data Mining and Predictive Analytics

Getty Images

Failure to prioritize objectives and improper selection of candidate wells can have significant implications for both derived value and potential risk. This paper addresses the business problem of reducing the uncertainty of well-work-program outcomes so that more-informed choices can be made, enhancing the benefits and value of a well-work program. It illustrates the use of data-driven models to estimate key performance indicators for well-work jobs and to predict the likely outcome using predetermined success criteria.

Introduction

Well work consists of the complete end-to-end business process covering any operation on an oil or gas well during or at the end of its productive life. Well-by-well reviews, with good support information, remain the best way of spotting large amounts of potential production. Data-driven incremental-learning models provide a set of intelligent tools that synthesize large volumes of data and make timely recommendations on the basis of learned historical behaviors and discovered hidden patterns across scattered heterogeneous sources.

This project examined a wide range of data-mining and machine-learning algorithms capable of dealing with large volumes of data, data-quality issues, and restrictive parameter constraints. The resulting model uses existing variables available at the planning for workover jobs as input to predict the likely outcome of individual jobs. Enhancing the decision-making process with reduced uncertainty for the well-work portfolio maximizes the overall program value and its yield on investment.

This article, written by Special Publications Editor Adam Wilson, contains highlights of paper SPE 167869, “Enhancing Well-Work Efficiency With Data Mining and Predictive Analytics,” by Mohamed Sidahmed, SPE, Eric Ziegel, SPE, Shahryar Shirzadi, SPE, David Stevens, SPE, and Maria Marcano, SPE, BP, prepared for the 2014 SPE Intelligent Energy Conference and Exhibition, Utrecht, The Netherlands, 1–3 April. The paper has not been peer reviewed.
...
This article is reserved for SPE members and JPT subscribers.
If you would like to continue reading,
please Sign In, JOIN SPE or Subscribe to JPT

Enhancing Well-Work Efficiency With Data Mining and Predictive Analytics

01 October 2015

Volume: 67 | Issue: 10

STAY CONNECTED

Don't miss out on the latest technology delivered to your email weekly.  Sign up for the JPT newsletter.  If you are not logged in, you will receive a confirmation email that you will need to click on to confirm you want to receive the newsletter.