Pushing the Frontier Through Wellbore Strengthening

Making hole has become a more difficult and complex operation as operators move into untapped horizons, especially deepwater and unconventional fields. It is this increased difficulty that is driving a growing number of companies to invest millions of dollars in advanced materials that seek to make drilling wells easier. The technologies many are working on involve not mechanical systems, but advanced chemistry and physical science. Some are using nanoparticles and others are reworking older technologies by adding new substances, all in an effort to make the undrillable drillable.
Those reaching for this prize include teams of university researchers, young technology startups, and established firms that are buying intellectual property from others so they can join the race. Different groups are designing drilling-fluid additives and other materials that they claim make unstable wellbore walls stronger by preventing and sealing fractures as the drill bit eats its way down to the pay zone.
The importance of these wellbore-strengthening objectives is well understood by drillers who have suffered sudden losses of drilling fluids into the rock formation through fractures, which can lead to gas kicks and catastrophic blowouts, or those who have had to deal with stuck pipe because of a collapsed borehole. For petroleum engineers, preventing these problems with new technology means they can design simpler, cheaper, and safer wells with fewer casing strings. For the boardroom, wellbore strengthening means executives can promise better returns and higher flow rates to investors because large-diameter casing strings can be placed into the production zone. And for the industry in general, wellbore strengthening means wells that many consider too dangerous or too hard to drill may soon become tamed.
...If you would like to continue reading,
please Sign In, JOIN SPE or Subscribe to JPT
Pushing the Frontier Through Wellbore Strengthening
Trent Jacobs, JPT Senior Technology Writer
01 November 2014
Managed-Pressure-Drilling Equipment Augments Deepwater Well Control
This paper describes how a technique known as applied-surface-backpressure managed-pressure drilling (ASBP-MPD) can alleviate the limitations of conventional deepwater well control.
Model Simulates Gas Kicks in Nonaqueous Drilling Fluids
Nonaqueous drilling fluids, such as synthetic-based and oil-based mud (SBM and OBM, respectively), are used frequently to drill one or more sections of a well to reduce drilling problems such as shale sloughing, wellbore stability, and stuck pipe.
UAE Case Study Highlights Challenges of a Mature Gas-Condensate Field
Three onshore fields in the Emirate of Sharjah, United Arab Emirates, have more than 30 years of production history from more than 50 gas-condensate wells.
ADVERTISEMENT
STAY CONNECTED
Don't miss out on the latest technology delivered to your email weekly. Sign up for the JPT newsletter. If you are not logged in, you will receive a confirmation email that you will need to click on to confirm you want to receive the newsletter.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT