ADVERTISEMENT

Wireless H2S Sensor Uses Nanotechnology To Improve Safety In Oil and Gas Facilities

Topics: H2S/sour gas

Real-time monitoring of pollutant, toxic, and flammable gases is important for health and safety during petroleum-extraction and -distribution operations. Currently, many methods exist for detecting such gases, but most sensors suffer from slow response times, high power consumption, high costs, or an inability to operate in harsh conditions. This paper demonstrates a small, low-cost, low-power, highly sensitive nanomaterial-based gas sensor specifically targeted for the detection of hydrogen sulfide (H2S).

Introduction

Current personal monitors for H2S are typically electrochemical-based sensors because of their low power consumption, relatively small size, and satisfactory selectivity. However, electrochemical cells typically have fairly slow response times and are prone to degradation or errors at extreme temperatures and humidity. Semiconducting-metal-oxide (SMO) sensors have fast response times and simple interface electronics and can operate in harsh conditions, making them a mainstay of industrial monitoring. However, the power required to operate a conventional SMO sensor is typically hundreds of milliwatts. Therefore, operation of a handheld monitor using conventional SMO sensors is not feasible for long-term monitoring. To overcome this problem, the authors have fabricated very-low-power microheaters and functionalized them with tungsten oxide (WO3) nanoparticles to create an H2S sensor suitable for long-term battery-powered operation.

This article, written by Special Publications Editor Adam Wilson, contains highlights of paper SPE 166544, “An Innovative Wireless H2S Sensor Based on Nanotechnology To Improve Safety In Oil and Gas Facilities,” by Marco Piantanida, SPE, Maurizio Veneziani, and Roberto Fresca Fantoni, Eni, and William Mickelson, Oren Milgrome, Allen Sussman, Qin Zhou, Ian Ackerman, and Alex Zettl, University of California at Berkeley, prepared for the 2013 SPE Offshore Europe Oil and Gas Conference and Exhibition, Aberdeen, 3–6 September. The paper has not been peer reviewed.
...
This article is reserved for SPE members and JPT subscribers.
If you would like to continue reading,
please Sign In, JOIN SPE or Subscribe to JPT

Wireless H2S Sensor Uses Nanotechnology To Improve Safety In Oil and Gas Facilities

01 August 2014

Volume: 66 | Issue: 8

STAY CONNECTED

Don't miss out on the latest technology delivered to your email weekly.  Sign up for the JPT newsletter.  If you are not logged in, you will receive a confirmation email that you will need to click on to confirm you want to receive the newsletter.

 

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT