A New Three-Phase Microemulsion Relative Permeability Model

The complete paper presents a new three-phase relative permeability model for use in chemical-flooding simulators. A model that has been widely used in chemical-flooding simulators for decades has numerical discontinuities that are not physical in nature and that can lead to oscillations in the numerical simulations. The proposed model is simpler, has fewer parameters, and requires fewer experimental data to determine the relative permeability parameters compared with the original model.

Background

Two- and three-phase relative permeability measurements at low interfacial tension (IFT) have been published previously, and microemulsion relative permeability models have been proposed in the literature as well. But none of these can model the microemulsion phase across different phase-behavior environments, from oil-in-water, to the middle phase, to water-in-oil emulsions. Desirable features should include agreement between two- and three-phase micro­emulsion relative permeability and oil-recovery data, and relative simplicity for use in reservoir simulators with a minimum number of model parameters that can be estimated from experimental data in a straightforward way. Satisfying these requirements has turned out to be an extremely challenging task.   

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 187369, “A New Three-Phase Microemulsion Relative Permeability Model for Chemical-Flooding Reservoir Simulators,” by Hamid R. Lashgari, Gary A. Pope, Mohsen Tagavifar, Haishan Luo, and Kamy Sepehrnoori, The University of Texas at Austin, and Zhitao Li and Mojdeh Delshad, Ultimate EOR Services, prepared for the 2017 SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, 8–11 October. The paper has not been peer reviewed.
...
This article is reserved for SPE members and JPT subscribers.
If you would like to continue reading,
please Sign In, JOIN SPE or Subscribe to JPT

A New Three-Phase Microemulsion Relative Permeability Model

01 January 2018

Volume: 70 | Issue: 1

STAY CONNECTED

Don't miss out on the latest technology delivered to your email weekly.  Sign up for the JPT newsletter.  If you are not logged in, you will receive a confirmation email that you will need to click on to confirm you want to receive the newsletter.