Modeling of Production Decline Caused by Fines Migration in Deepwater Reservoirs

Many deepwater wells experience steep productivity declines. On the basis of field observations, this decline is partly attributed to fines-migration effects. The complete paper presents a numerical work flow to simulate the effect of flow-induced fines migration on production decline over time in deepwater reservoirs. This work flow will help reservoir engineers to predict the damage caused by fines migration, predict production decline, and plan remediation.
Introduction
Although there are generally two causes of fines mobilization (or release), chemical (colloidal) and mechanical (hydrodynamical or flow), the complete paper focuses only on the mechanically induced fines migration, in which fines are mobilized by increasing flow velocity. As with chemically induced fines, there is a critical flow velocity at which fines are mobilized.
Previous studies focused on characterizing fines-migration processes by use of intricate mathematical models and adjustment of modeling parameters to match laboratory results. These models are mathematically complex and computationally expensive usually, which means they are applicable only to 1D simulation. To solve engineering problems, reservoir engineers need to perform realistic simulation on complex 3D geometries.
If you would like to continue reading,
please Sign In, JOIN SPE or Subscribe to JPT
Modeling of Production Decline Caused by Fines Migration in Deepwater Reservoirs
01 February 2018
Flow-Simulation Model Improves Analysis of Perforated-Rock Cleanup and Productivity
Because of inherent complexities, understanding the characteristics of perforations in downhole environments is a significant challenge. Perforation-flow laboratories have been used to provide insight into cleanup and productivity mechanisms around perforation tunnels.
Formation Damage
Formation damage: Do we always need to have a high focus on its prevention, or do occasions exist when it really does not matter?
Study Investigates Formation Damage Induced by Water Reinjection in Unconsolidated Sands
This paper describes a coreflooding program performed with sandpacks at different permeabilities, water qualities, and injection conditions.
ADVERTISEMENT
STAY CONNECTED
Don't miss out on the latest technology delivered to your email weekly. Sign up for the JPT newsletter. If you are not logged in, you will receive a confirmation email that you will need to click on to confirm you want to receive the newsletter.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT