ADVERTISEMENT

Study of Expandable-Tubular Collapse Leads To Risk-Based Strength Development

Fig. 1—Hoop residual-stress measurement specimen after splitting.

Solid expandable technology is helping the industry reach more challenging wells. The objective of this study is to investigate comprehensively the effects of the expansion process on the pipe mechanical properties and collapse performance and to develop a reliable risk-based collapse-strength design for the expandables.

Introduction

Expansion technology allows for tubulars to expand in situ, thus maintaining downhole size. It has been used successfully for zonal isolation in depleted or trouble zones as a drilling liner. It was also found to be very useful for extended reach in brownfields without losing the tubular diameter for maximum production. Another application is to repair existing casing worn by drilling. Several expansion technologies have been developed since the first concept test was performed in 1993. Currently, an expansion system called top anchor and pull (TAAP) is being developed, and multiple liners have been installed in the Gulf of Mexico.

The TAAP expansion system currently uses 50-ksi-grade expandable seamless tubulars. This material exhibits a large degree of work-hardening and, therefore, is suited for use in expandable tubulars. The collapse strength of tubulars, one of the major concerns during well design, is generally determined by the diameter-to-thickness (D/t) ratio as well as pipe material yield strength and geometric factors such as ovality, eccentricity, and residual stresses. Earlier studies have shown that the expansion process can affect the factors influencing  tubular collapse performance significantly.

This article, written by Special Publications Editor Adam Wilson, contains highlights of paper SPE 187460, “The Study on Expandable-Tubulars Collapse Performance and the Development of Risk-Based Design-Collapse Strength,” by X. Long, S.M. Roggeband, H. Pasaribu, and M. Jabs, Shell, and F.J. Klever, SPE, BetaTech Consulting, prepared for the 2017 SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, 9–11 October. The paper has not been peer reviewed.
...
This article is reserved for SPE members and JPT subscribers.
If you would like to continue reading,
please Sign In, JOIN SPE or Subscribe to JPT

Study of Expandable-Tubular Collapse Leads To Risk-Based Strength Development

01 June 2018

Volume: 70 | Issue: 6

STAY CONNECTED

Don't miss out on the latest technology delivered to your email weekly.  Sign up for the JPT newsletter.  If you are not logged in, you will receive a confirmation email that you will need to click on to confirm you want to receive the newsletter.

 

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT