ADVERTISEMENT

Saturation Modeling Under a Complex Fluid-Fill History: Drainage and Imbibition

Fig. 1—Saturation/capillary-pressure drainage (solid green) and imbibition scanning curves (red). Scanning curves begin from the endpoint of each drainage path.

This paper presents a saturation-modeling approach for fields and reservoirs with complex hydrocarbon-charging histories. The model resolves saturation-height functions for the primary-drainage, imbibition, and secondary-drainage equilibriums. As part of the approach, a method of evaluating the residual-hydrocarbon saturation below the initial free-water level (FWL) is proposed. The developed theory is based on the principle of capillary-pressure/saturation hysteresis on the drainage/imbibition process in a water-wet system.

Introduction

Many discovered oil and gas fields are found to have gone through complex fluid-fill histories where residual hydrocarbons are observed below the FWL. To add to the complexity, some of these are giant fields and are divided into compartments with varying contacts and FWLs.

To model saturation-height dependencies for reservoirs in fields under imbibition equilibrium, one of the adopted practices is to use a drainage model built from core data or log data to compute the saturation starting from the original FWL contact but only calculate the hydrocarbon-in-place volumes above the initial FWL. Another common practice is to build log-based drainage models using the current FWL while ignoring the uncertainties in the transition zone from the imbibition effect. These approaches typically lead to an inappropriate estimation of the hydrocarbon saturation in the transition zone and normally require separate models for different segments of the field.

In this paper, an approach is presented for modeling the core capillary-pressure imbibition and secondary drainage cycles, integrating with log-based saturation-height models, and designing a work flow for upscaling and implementation in 3D reservoir models.

This article, written by Special Publications Editor Adam Wilson, contains highlights of paper SPE 188594, “Saturation Modeling Under Complex Fluid-Fill History—Drainage and Imbibition,” by H. Xian, SPE, L. Beugelsdijk, SPE, and A. Kohli, SPE, Shell; E. Fokkema, SPE, Nederlandse Aardolie Maatschappij; and A. Cense, Shell, prepared for the 2017 Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, 13–16 November. The paper has not been peer reviewed.
...
This article is reserved for SPE members and JPT subscribers.
If you would like to continue reading,
please Sign In, JOIN SPE or Subscribe to JPT

Saturation Modeling Under a Complex Fluid-Fill History: Drainage and Imbibition

01 July 2018

Volume: 70 | Issue: 7

STAY CONNECTED

Don't miss out on the latest technology delivered to your email weekly.  Sign up for the JPT newsletter.  If you are not logged in, you will receive a confirmation email that you will need to click on to confirm you want to receive the newsletter.

 

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT