ADVERTISEMENT

Integrated CO2-Foam Pilot in a Heterogeneous Carbonate Field

Fig. 1—Well map showing location of selected pilot pattern and peripheral injection wells.

A carbon-dioxide (CO2) -foam enhanced-oil-recovery (EOR) pilot research program has been initiated to advance the technology of CO2 foam for mobility control in a heterogeneous carbonate reservoir. Previous field tests with CO2 foam report varying results because of injectivity problems and the difficulty of attributing fluid displacement specifically to CO2 foam. A more-integrated multiscale methodology was required for project design to further understand the connection between laboratory- and field-scale displacement mechanisms.

East Seminole Field

The East Seminole Field in the Permian Basin of West Texas was discovered in the early 1940s with an estimated 38 million barrels of original oil in place (OOIP). The field was developed throughout the 1960s, producing 12% OOIP through pressure depletion. Waterfloods began in the early 1970s and continued into the 1980s with strategic infill drilling, reducing the well spacing from 40 to 20 acres.

Tertiary CO2 floods began in inverted 40-acre, five-spot patterns in 2013 in the eastern portion of the field. Miscible CO22 injection initially increased oil production and reservoir pressure. However, rapid CO2 breakthrough, high producing gas/oil ratio (GOR), and CO2 channeling was soon observed in peripheral production wells. CO2 performance suffers because of reservoir heterogeneity and unfavorable mobility ratios between injected CO2 and reservoir fluids, resulting in poor areal sweep efficiency, high producing GOR, and CO2 channeling.

As seen in other areas of the Permian Basin, tilted fluid contacts, presumably resulting from basin activity or a breach of seal, have created a deeper residual oil zone (ROZ). These zones are thought to have been naturally waterflooded through hydrodynamic displacement and have been shown to contain considerable immobile oil (20 to 40% OOIP) that can be mobilized by CO2 flood. Thus, the residual oil saturation in the ROZ is similar to waterflooded zones and establishes it as an economically attractive target for tertiary CO2 recovery efforts.

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 190204, “An Integrated CO2 Foam EOR Pilot Program With Combined CCUS in an Onshore Texas Heterogeneous Carbonate Field,” by Z.P. Alcorn, SPE, and S.B. Frederiksen, University of Bergen; M. Sharma, University of Stavanger; A.U. Rognmo, SPE, University of Bergen; T.L. Føyen, SPE, University of Bergen and SINTEF; and M.A. Fernø, SPE, and A. Graue, SPE, University of Bergen, prepared for the 2018 SPE Improved Oil Recovery Conference, Tulsa, 14–18 April. The paper has not been peer reviewed.
...
This article is reserved for SPE members and JPT subscribers.
If you would like to continue reading,
please Sign In, JOIN SPE or Subscribe to JPT

Integrated CO2-Foam Pilot in a Heterogeneous Carbonate Field

01 July 2018

Volume: 70 | Issue: 7

STAY CONNECTED

Don't miss out on the latest technology delivered to your email weekly.  Sign up for the JPT newsletter.  If you are not logged in, you will receive a confirmation email that you will need to click on to confirm you want to receive the newsletter.

 

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT