Enhanced recovery

Hybrid Solution to the Grand Challenge of Developing Deepwater Stranded Gas

While the floating liquefied-natural-gas (FLNG) option initially looked promising, high capital expenditure and very high operational expense (OPEX) have limited its potential application, with four potential FLNG projects being canceled in Australasia in the last 2 years.

jpt-2018-05-27686f1.jpg
Fig. 1—Hybrid concept with low-pressure FPSO including condensate storage and export.

While the floating liquefied-natural-gas (FLNG) option initially looked promising, high capital expenditure and very high operational expense (OPEX) have limited its potential application, with four potential FLNG projects being canceled in Australasia in the last 2 years. A new solution involving a proprietary hybrid concept has emerged to meet this challenge of developing deepwater gas fields. It is neither surface nor subsea, but the combination of both, offering fundamentally more-efficient and hence lower-cost processing.

Background

Subsea and Deep Water. When the oil and gas industry moved into deeper waters in the 1990s, subsea processing operations were not available.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.