Agenda

Monday, April 19

08:00 - 17:00
Overview of Pure-Solvent and Steam-Solvent Analysis and Design for Thermal In-Situ Operations
Ticketed Event
Instructor(s) Mazda Irani

 

This 1-day course is an introduction to thermodynamics and pressure-volume-temperature (PVT) and tuning parameters to fit laboratory data. Different analytical models for oil rate predictions such as Butler-Mokrys (1989) and Dunn-Nenniger-Rajan (1989) models will be discussed.

Topics:

  • Introduction to thermodynamics and pressure-volume-temperature (PVT): basic law such as: Clausius-Clapeyron Equation, Dalton's law, Henry's Law and Raoult’s law are explained and practical examples such as temperature reduction in chamber due to NCG injection, and temperature reduction at Azeotropic point in ES-SAGD process will be solved numerically.
  • Pure Solvent Modelling: processes such as VAPEX and Nsolv will be explained, and different theories explaining the pure solvent oil rates such as Butler-Mokrys (1989) and Dunn-Nenniger-Rajan (1989) models will be explained and compared to physical models. Concepts such as onset of asphaltene precipitation will be discussed.
  • Steam-Solvent Modelling: ES-SAGD process will be explained and Gupta-Gittins(2012) and Rabiei–Harding–Abedi (2017) models will be discussed and numerically compared.
  • Production Challenges in Solvent Operation: Liquid-pool model and concept will be explained and concern with steam trap control for Nsolv will be discussed and numerically explained.

Learn more about this training course ►