SPE DISTINGUISHED LECTURER SERIES

is funded principally through a grant of the

SPE FOUNDATION

The Society gratefully acknowledges those companies that support the program by allowing their professionals to participate as Lecturers.

And special thanks to The American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME) and individual SPE sections for their contribution to the program.
SPE Distinguished Lecturer Series

HYDRAULIC FRACTURING
RESTIMULATION

Steve Wolhart
Pinnacle Technologies
Acknowledgements

Gas Research Institute (GRI) for sponsoring this project

• Project Team
 – Advanced Resources International
 – Ely & Associates
 – Intelligent Solutions
 – Pinnacle Technologies
 – Schlumberger Dowell
 – Schlumberger Holditch-RT
 – Stim-Lab

• Operating Companies
 – Barrett Resources (Williams Production)
 – Enron Oil & Gas (EOG Resources)
 – Mitchell Energy (Devon Energy)
 – UPRC (Anadarko)
Presentation Outline

• Introduction
 – Key Questions
 – Basic Concepts

• Restimulation Background
 – Industry Interviews
 – Literature Review

• GRI Restimulation Program
 – Candidate Selection Methodology
 – Case Histories

• Conclusions
Key Questions

Is there a natural gas resource base that can be economically captured via restimulation?

What is the nature of the resource?

What is industry’s experience with gas-well restimulation?

What are the technical obstacles?

Should restimulation be part of your development plan?
Restimulation – Candidate Identification

Definition: An underperforming well is one that is not performing up to its productive potential as governed by in-situ reservoir properties.

Implication: To identify underperforming wells, performance must be separated into reservoir and completion components.
Causes of Well Underperformance

Ineffective/Problematic Initial Completion
- Design
- Execution
- Lack of Data
- Damage

Pressure Depletion Changes the Stress Field
- Frac Geometry Changes
- Refrac Reorientation
- Longer Fracs

Formation Damage During Production Operation
- Workover Fluid Incompatible
- Scale Buildup
- Proppant Pack Degradation

Well Underperformance

Technology Evolution
- New Technology
Restim Background

- GRI Industry Survey (U.S. Only)
 - 89 Interviews: Operators, Service Companies & Consultants
 - Literature Review: 50 Published Case Studies & 15 Detailed Case Histories

- Refracs are a small fraction of total U.S. fracture-stimulation activity
 - 20,000 to 30,000 total frac jobs/year
 - 450 to 750 refracs/year

- Most restim decisions made without detailed reservoir & completion analysis
 - Simple production comparisons - frac poor well near the good well
In general, there is a very negative perception of restimulation by industry

Survey Quotes

“Remediation doesn’t work. These are poor reservoirs with poor recovery, poor economics.”

“Don’t do any refracs. If a well doesn’t perform, we assume it’s a poor formation.”

“We had a bad experience in the Eighties with the results of refracs.”

“It is usually better to abandon the well.”
However...

• There are a number of plays with active restimulation programs:
 – Codell/Niobrara, Denver-Julesburg Basin
 – Antrim Shale, Michigan Basin
 – Fruitland Coal, San Juan Basin
 – Pottsville Coal, Black Warrior Basin
... with Documented Restimulation Success

<table>
<thead>
<tr>
<th>Region</th>
<th>Avg. Incr. Recovery (Bcf)</th>
<th>Average Restim Cost ($000)</th>
<th>Average Cost of Incr. ($/Mcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-Continent (6)</td>
<td>2.03</td>
<td>155</td>
<td>0.08</td>
</tr>
<tr>
<td>South Texas (2)</td>
<td>1.30</td>
<td>158</td>
<td>0.12</td>
</tr>
<tr>
<td>Rockies (8)</td>
<td>1.97</td>
<td>129</td>
<td>0.07</td>
</tr>
<tr>
<td>Michigan (2)</td>
<td>0.42</td>
<td>15</td>
<td>0.04</td>
</tr>
<tr>
<td>Other (4)</td>
<td>0.48</td>
<td>134</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Key: Required Intensive Candidate Selection & Treatment Design Effort
General Observations from the Interview & Literature Study

- Operators are reluctant to restim good wells
- Production data alone is used to select candidates
 - Detailed performance assessments are rarely conducted
- Restim results are frequently disappointing
 - Restim is perceived as high risk/marginal return
 - Variable and unreliable restim outcomes
- Resource constraints (manpower, capital, etc.) limit ability to analyze
- There have been areas of significant restimulation success
Components of GRI Restimulation Project

• Analytic
 – Candidate selection methods - Develop efficient selection methodology
 • Production Statistics, Production Data Analysis & Virtual Intelligence
 • Benchtop Study
 – Short-term/low-cost verification testing
 – Laboratory testing
 – Treatment schemes

• Field Demonstrations
 – Four Sites:
 • Green River Basin (Frontier Formation)
 • Piceance Basin (Williams Fork Formation)
 • East Texas Basin (Cotton Valley Formation)
 • Ft. Worth Basin (Barnett Shale Formation)
Candidate Selection Methodologies

- **Production Statistics**
 - Limited, easily-obtained (public) data
 - No data interpretation
 - Production trend mapping

- **Virtual Intelligence**
 - Detailed well data
 - No data interpretation
 - Neural nets, genetic algorithms & fuzzy logic
 - Pattern recognition – subtle relationships

- **Production Data Analysis**
 - Moderate data requirements
 - Considerable data interpretation
 - Type curve analysis
Production Statistics

- Compare production performance of each well to nearby offsets using several production indicators
- Look for underperforming wells relative to offsets
Virtual Intelligence (VI)

- Pattern recognition – discover subtle relationships between data
- Computer tools to mimic human mind
 - Neural networks, genetic algorithms & fuzzy logic
- Tools allow
 - Adaptive learning (neural nets)
 - Intelligent optimization (genetic algorithms)
 - Computing with words (fuzzy logic)
Virtual Intelligence (VI)

- Pattern recognition – discover subtle relationships between data
- Computer tools to mimic human mind
 - Neural networks, genetic algorithms & fuzzy logic
- Tools allow
 - Adaptive learning (neural nets)
 - Intelligent optimization (genetic algorithms)
 - Computing with words (fuzzy logic)
VI – Three Step Process

Artificial Neural Nets
- Build a Well Performance Model for the Field

Genetic Algorithms
- Identify controllable (fluid type, sand concentration, etc.) and uncontrollable (pay thickness, porosity) parameters
- Optimize controllable parameters – successful practices

Fuzzy Logic
- Decision tool
 - Using engineering expertise to identify key parameters
- Do not have to be precise in value (fuzzy & qualitative)
- Incorporate with steps 1 and 2

Most Virtual Intelligence work to date in E&P is just artificial neural nets
1. Monthly Production & Pressure Histories
 - Identify operating pressure changes
 - Identify added zones
 - Identify workovers, shutdowns

2. Log-Derived Data Per Operator’s Cut-Off(s)
 - Net thickness
 - Net porosity
 - Net water saturation

3. Other
 - Initial reservoir pressure
 - Gas gravity and reservoir temperature
 - Discern field practices

Type-Curves

Dimensionless Rate, \(q_d \)

Dimensionless Time, \(T_d X_f \)

Results

- Permeability \(X_f \)
- Drainage Area
- Production Forecast
- Predicted Pressure vs. Time
Comparison - Data and Interpretation Requirements

Data Requirements

Interpretation Requirements

Production Statistics

Virtual Intelligence

Type Curves

Time, Cost Increases
7 total layers (4 reservoir, 3 inter-zone seals), all laterally continuous
- 16,000 total acres: ~8km x 8 km (26,400 feet x 26,400 feet)
- 49,392 total gridblocks, 84 x 84 x 7 (28,224 active)
- Depth to top layer: 2721 m to 2843 m (8,928 to 9,328 feet)
- 122 meters of relief (400 feet of relief)
- Gently dipping NE to SW at 6°
- No faults
- Original datum pressure of 27,600 kPA, 9.73 kPa/m (4,000 psi, 0.43 psi/ft.)
- Original datum temperature of 93 °C (200 °F)
- Single phase gas (0.7 S.G.), no water saturation
Benchtop Study

• Type curves provided the best candidate selections
 – 85% efficiency benchtop study
 – Quantitative predictions of incremental production were not always accurate however
 • Oversimplifies well & reservoir conditions

• Virtual intelligence also provided good results
 – 83% efficiency benchtop study
 • Best results in our field tests
 – Can lead to insights into “performance drivers”
 – Lacks analytic rigor
Benchtop Study

• Production statistics worked poorly for benchtop study
 – Less efficient at candidate identification than random selection
 • Doesn’t separate reservoir and completion components well
 – Production Statistics best used in simpler reservoirs
Case Histories

Ineffective/Problematic Initial Completion
- Design
- Execution
- Lack of Data
- Damage

Pressure Depletion Changes the Stress Field
- Frac Geometry Changes
- Refrac Reorientation
- Longer Fracs

Formation Damage During Production Operation
- Workover Fluid Incompatible
- Scale Buildup
- Proppant Pack Degradation

Well Underperformance

Technology Evolution
- New Technology
Location of Field Test Sites

Green River Basin
- Big Piney/LaBarge Producing Complex
- Frontier Formation
- EOG Resources

Piceance Basin
- Grand Valley/Parachute/Rulison Fields
- Williams Fork Formation
- Barrett Resources

Ft. Worth Basin
- Barnett Shale
- Mitchell Energy

East Texas Basin
- Carthage Field
- Cotton Valley Sandstone
- Anadarko
Case History – EOG Resources, Frontier Formation

Frontier Type Log

1st (Kf1)

2nd (Kf2)

3rd (Kf3)

• 2nd Frontier
 • Pay Distributed among 5 Benches (gross 130 meters, 400 ft)

• Variable Reservoir Parameters:
 – 1B: fluvial channels
 – 2, 3B: marine shoreface
 – 4B: fluvial, coastal plain
 – 5B: mixed fluvial / marginal marine

• Production Commingled with Other Fms

• 2370 m (7350')

• 2500 m (7750')
Case History – EOG Resources, Frontier Formation

Detail Review

- Started with ~270 wells in database
- Candidate selection with all three techniques
- Perform detailed review of all available data on top 50 wells
- Rated wells from 1 - 50 with respect to potential candidates
- Reviewed with EOG
- Selected restimulation candidates (4 restims)
 - Three - small fracs, untreated zones
 - One – unbroken gel
Case History – EOG Resources, Frontier Formation

Field Results

Pre-Restim Rate (Mcfd)

Post-Restim Rate (Mcfd)

GRB 45-12

NLB 57-33

GRB 27-14

WSC 20-09

Could not pump job as designed

Poor load fluid recovery

2830 m³/d 5660 m³/d 8490 m³/d

2830 m³/d 5660 m³/d 8490 m³/d

8490 m³/d 11,320 m³/d 14,150 m³/d

5660 m³/d 2830 m³/d

Poor load fluid recovery
Case History – East Texas

Green River Basin
- Big Piney/LaBarge Producing Complex
- Frontier Formation
- EOG Resources

Piceance Basin
- Grand Valley/Parachute/ Rulison Fields
- Williams Fork Formation
- Barrett Resources

Ft. Worth Basin
- Barnett Shale
- Mitchell Energy

East Texas Basin
- Carthage Field
- Cotton Valley Sandstone
- Anadarko
Case History – Anadarko, Cotton Valley

CGU 19-13 - Cotton Valley Section

- Thick, Layered and Low Perm
- Stacked sands
- Poor well-to-well correlation
- Utilized a Wide Variety of Completion & Stimulation Procedures
- Pay & perfs?
- Zonal Coverage?

Travis Peak/Cotton Valley Transition

B-Lime

Upper Cotton Valley (UCV)

C-Lime

Taylor

Stage 1

2740 m

2890 m

3020 m

3080 m

3130 m

Stage 2

Stage 3

8000

8100

8200

8300

8400

8500

8600

8700

8800

8900

9000

9100

9200

9300

9400

9500

9600
Case History – Anadarko, Cotton Valley

Detailed Analysis

Evaluated ~ 300 wells with all three selection techniques

• Top 15 for each method had detailed analysis

All wells had large numbers of perfs over long intervals

• Poor zonal coverage and low conductivity

Two categories of wells

• Category I: Very stable delayed crosslink fracs with little or no breaker
• Category II: Low gel concentration poor proppant transport fluids
Ten candidates were proposed for waterfrac/gel cleanup treatment – performed three restims

- **Objectives**
 - Polymer cleanout
 - Stimulate new zones with ball sealers for diversion
 - CO$_2$ in later portion of each frac to assist in water cleanup

- **Pull tubing and isolate the Taylor interval**

- **Treat the intervals**
 - Single-stage, water, KCl, friction reducer, breaker, proppant, ball sealers, and CO$_2$

- **Volume of proposed treatment approximately the same as previous fracs**
CGU 3-8 Production & Tracer Logs

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Gt API 2000</th>
<th>Perforation</th>
<th>Flow Rate MCFD</th>
<th>QGas MCFD</th>
<th>QWater BFPD</th>
<th>QpGas MCFD</th>
<th>QpWater BFPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>3385.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>22.5</td>
<td>130</td>
<td>0</td>
<td>120</td>
</tr>
<tr>
<td>3477.00</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1040</td>
<td>0</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>8400</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8500</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8600</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8700</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8800</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8900</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9000</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9100</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9200</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9300</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9400</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Depth Values:
- 2755 m
- 2990 m
Case History – Anadarko, Cotton Valley

Field Results

![Graph showing field results with points for CGU 10-7, CGU 3-8, and CGU 15-8.]
Location of Field Test Sites

Green River Basin
- Big Piney/LaBarge Producing Complex
- Frontier Formation
- EOG Resources

Piceance Basin
- Grand Valley/Parachute/Rulison Fields
- Williams Fork Formation
- Barrett Resources

Ft. Worth Basin
- Barnett Shale
- Mitchell Energy

East Texas Basin
- Carthage Field
- Cotton Valley Sandstone
- Anadarko
Case History – Barrett Resources, Williams Fork Formation

- Average Gross Thickness 550 to 800 meters (1700’ - 2400’)
- Discontinuous, stacked sands
- 20-40 stacked pays
 - Small lenses
- Completion issues
 - Pay & perfs
 - Frac stages
 - Sand volumes
Case History – Barrett Resources, Williams Fork

Prepare Short List of Potential Candidates

- Started with ~300 wells in database
- Candidate selection with all three techniques
- Selected 40+ wells
 - Detailed well study
- Reduced to 20 wells
- Reviewed with Barrett
- Selected restimulation candidates
 - Small fracs, untreated perfs
Case History – Barrett Resources, Williams Fork

Langstaff #1 Tracer Scan
Case History – Barrett Resources, Williams Fork

Field Results

Pre-Restim Rate (Mcfd) vs. Post-Restim Rate (Mcfd)

- Langstaff #1: 2830 m³/d, 5660 m³/d, 8490 m³/d
- RMV 55-20: 11,320 m³/d, 14,150 m³/d, 5660 m³/d, 2830 m³/d
Case Histories

- Ineffective/Problematic Initial Completion
 - Design
 - Execution
 - Lack of Data
 - Damage

- Pressure Depletion Changes the Stress Field
 - Frac Geometry Changes
 - Refrac Reorientation
 - Longer Fracs

- Formation Damage During Production Operation
 - Workover Fluid Incompatible
 - Scale Buildup
 - Proppant Pack Degradation

- Well Underperformance

- Technology Evolution
 - New Technology
Case History - Mitchell Energy, Barnett Shale

Refrac Reorientation

Concept: Frac Geometry Changes With Depletion
Refrac Drains Untapped Reservoir
Case History – Mitchell Energy, Barnett Shale

Wells ‘A’ & ‘B’ Log-log Rate Plots

- 283 m³/d
- 2830 m³/d
- 28,300 m³/d
- 283,000 m³/d

Production rate, Mscf/d

Time, days
Case History – Mitchell Energy, Barnett Shale

Well ‘A’ Surface Tiltmeter Results

Initial azimuth N40E
Case History – Mitchell Energy, Barnett Shale

Well ‘A’ Rate Match Plot

Gas Rate, Mscf/d

Date

24-Jul-98 28-Aug-99 01-Oct-00

22,640 m³/d
7075 m³/d
1415 m³/d
Case History – Mitchell Energy, Barnett Shale

Well ‘B’ Rate Plot

- 5660 m³/d
- 28,300 m³/d

Mscf/d

- Refrac

date

2-Jan-00 3-Mar-00 3-May-00 3-Jul-00 2-Sep-00

200 400 600 800 1000 1200 1400
Case History – Mitchell Energy, Barnett Shale

Refrac Reorientation Conclusions

• Two Refrac Treatments
 – Good production increases
 – Oblique reorientation measured (research focus)
• Mitchell has active refrac program
• Refrac Treatments Viable On Suitable Tight Gas Wells
• Technology Applicable To Suitable Oil Wells
Economic Results
(does not include Mitchell wells)

<table>
<thead>
<tr>
<th>Site</th>
<th>Well</th>
<th>Date</th>
<th>Incr. Reserves (MMcf)</th>
<th>Frac Cost</th>
<th>Reserve Cost ($/Mcf)</th>
<th>Successful</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRB</td>
<td>GRB 45-12</td>
<td>1/99</td>
<td>602</td>
<td>$87,000</td>
<td>0.14</td>
<td>Y</td>
</tr>
<tr>
<td>GRB</td>
<td>GRB 27-14</td>
<td>1/99</td>
<td>(186)</td>
<td>$87,000</td>
<td>-</td>
<td>N</td>
</tr>
<tr>
<td>GRB</td>
<td>NLB 57-33</td>
<td>4/99</td>
<td>0</td>
<td>$20,000</td>
<td>-</td>
<td>N</td>
</tr>
<tr>
<td>GRB</td>
<td>WSC 20-09</td>
<td>6/00</td>
<td>302</td>
<td>$120,000</td>
<td>0.40</td>
<td>Y</td>
</tr>
<tr>
<td>PB</td>
<td>Lan 1</td>
<td>6/00</td>
<td>282</td>
<td>$50,000</td>
<td>0.18</td>
<td>Y</td>
</tr>
<tr>
<td>PB</td>
<td>RMV 55-20</td>
<td>6/00</td>
<td>75</td>
<td>$70,000</td>
<td>0.93</td>
<td>N</td>
</tr>
<tr>
<td>ETB</td>
<td>CGU 15-8</td>
<td>11/99</td>
<td>270</td>
<td>$100,000</td>
<td>0.37</td>
<td>Y</td>
</tr>
<tr>
<td>ETB</td>
<td>CGU 10-7</td>
<td>1/00</td>
<td>407</td>
<td>$100,000</td>
<td>0.25</td>
<td>Y</td>
</tr>
<tr>
<td>ETB</td>
<td>CGU 3-8</td>
<td>1/00</td>
<td>1,100</td>
<td>$100,000</td>
<td>0.09</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>2,852</td>
<td>$734,000</td>
<td>0.26</td>
<td>6/9</td>
</tr>
<tr>
<td></td>
<td>Avg</td>
<td></td>
<td>317</td>
<td>$82,000</td>
<td>0.26</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions
Identifying Areas to Study for Restimulation Potential

• **Under-performing completions**
 – Reservoir Complexity & Variability
 • Unconventional, naturally fractured, tight gas, etc.
 – Completion Complexity
 • Multiple zones
 • Thick gross intervals
 • Advanced stimulation & variation in frac designs
 – Performance
 • Cums & EURS seem low
 • Infill drilling success
 • Refrac success (but not followed-up)

• **Frac geometry changes (reorientation or longer frac length)**
 – Good initial stimulation
 – Moderate difference in max/min horizontal stresses
Conclusions
Treatment Design Considerations

• Identify cause of well underperformance and design treatment accordingly

• Treatments for GRI Project
 – Trended away from heavy gelled fluids
 – Moved to ungelled water, simpler fluids
 – Gas assist to aid clean-up
 – Single-stage treatments (economical) with diversion (ensure zonal coverage)
Conclusions

• Single Selection Technique Remains Elusive
 – Virtual Intelligence and Type Curves Offer the Best Results
 – Select method based on reservoir

• Case Histories Show Restimulation Potential
 – Despite negative industry perception

• Restim Can Add Reserves Inexpensively – Infrastructure Already in Place
 • Well & Production System

• Should Consider Restimulation as Part of Field Development Plan
Contact Information

Steve Wolhart
Phone: 281/876-2323
E-mail: steve.wolhart@pinntech.com