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[bookmark: _Toc23883856]Executive Summary
“Reservoir engineering is difficult. The most successful practitioner is usually the engineer who, through extensive efforts to understand the reservoir, manages to acquire a few more facts and thus needs fewer assumptions.”
– P. L. Essley Jr (1965)
Data analytics is a process of collecting, cleansing, transforming, and modeling data to discover useful information that can be used to make recommendations for future decisions.
Data analytics is fundamentally transforming several industries such as retail marketing, telecom, insurance, banking, etc. In this digital age, it is becoming more important for companies to leverage technology to change the way they operate, aided by data analytics. In the recent years, there also has been a growing application of digital technologies in oil and gas exploration and production. Oil and gas operations are becoming increasingly more complicated with modern facility infrastructures, complex reservoirs, increased regulatory requirements, changing workforce demographics, fast pace of unconventional field development and competitive landscape.
In this report, we focus on the impact of data analytics on reservoir engineering applications, more specifically, the ability to characterize reservoir parameters, analyze and model reservoir behavior and forecast performance to transform the decision-making process.
[bookmark: _b3k4bi660svo][bookmark: _Toc23883857]Why is Data Analytics Relevant Now for the Oil and Gas Industry?
The confluence of several factors such as sensor explosion, advances in cloud and hardware technology and innovations in data science algorithms, in addition to the recent downturn in the oil and gas industry alongside the success of data analytics in other industries, are attributed to the crossroads where we are with respect to applying data analytics in reservoir engineering work processes.
Over the past few years, several successful case studies (Mehta 2016; Sankaran et al. 2017) have demonstrated the benefits of applying data analytics to transform the traditional reservoir model to a data-driven decision support. The key questions that remain are related to determining the right work processes that lend themselves to data-driven insights, how to redesign them effectively in the new paradigm and adopting the appropriate business model to complement them. Most oil and gas companies have already embarked on this journey and are at varying maturity levels on this trajectory.
[bookmark: _37d9q06k52j2][bookmark: _Toc23883858]How Does Data Analytics Add Value in Reservoir Engineering Applications?
The rapid progress of big data and analytics offers companies opportunities to automate high-cost, complex, and error-prone tasks. Many oil and gas operators are progressively accelerating efforts to capture these opportunities in order to reduce costs, increase efficiency and safety. Companies that adequately employ automation can significantly improve their bottom line by converting data into information and enabling timely decision-making.
While data analytics applications in reservoir engineering can add value to various types of reservoirs, in particular a data deluge due to the scale and pace of field development has characterized the rise of unconventionals. While physics-based methods such as numerical simulations and analytical modeling remain in use, they present major challenges for unconventional assets, in particular:
Lack of reliable conceptual models to properly describe the underlying physics
Difficult characterization of the inputs required 
Complex physics-based models require long run times which conflicts with the short decision cycles in most unconventional developments
The computational requirements of physics-based model often lead to a trade-off between accuracy and model footprint. Today, it is still impractical to develop and maintain a basin-wide simulation model that is accurate at the well-level. It is essential however to understand the key factors driving the economic performance of unconventional field development. This gap is often addressed in practice by data-driven models designed to support field development decisions such as optimal well spacing, targeting, and completions design. 
Operators and software companies have extended the utility of data-driven models to support transactional decisions regarding entering or exiting unconventional plays. Emerging plays and appraisal stages are characterized by significant uncertainty regarding economic viability, where data-driven models in conjunction with systematic field pilots through experimental design are used to derive early insights and reduce risk. Subsequently, data-driven models are used for field development decisions and optimize drilling and completions practices.
Data collection programs to assess rock and fluid properties (e.g., fluid, log, core acquisition etc.) have also benefited through application of data analytics. In lieu of collecting extensive fluid or core samples and conducting lab experiments, empirical correlations, and data-driven methods are used to extract key features and estimate fluid or rock properties.
One of the most important tasks of a reservoir engineer is to make production forecasts. When the governing equations describing the underlying subsurface behavior is reasonably well understood such as in conventional reservoirs, data analytics is used to accelerate production forecasting through proxy models (response surface models), reduced physics models (e.g., capacitance-resistance models) or reduced order models (e.g., proper orthogonal decomposition, trajectory piece-wise linearization). More recently, data-driven and physics-constrained predictive uncertainty analysis methods have been developed to accelerate reservoir management decisions through a direct forecasting approach without ever building an actual model. In cases where the underlying phenomenon is not well understood or very complex such as in unconventional applications, data-driven methods (i.e., regression methods in machine learning) are used to map the inputs directly to desired response variables (such as cumulative production or estimated ultimate recovery at the end of a time interval). Often physics-inspired or certain features are used to improve production forecast accuracy such as the new variants of decline curve analysis (Holanda et al. 2017).
[bookmark: _ueose4qe924j]A key responsibility of the reservoir engineer is reservoir management, which includes responsibly developing and producing fields. Different stages of field development require different objectives and specific analyses. During early field life, the focus is on assimilating key reservoir data, (e.g., pressure, saturation, fluid distribution, rock and fluid properties, and hydraulic connectivity) and understanding subsurface behavior (e.g., reservoir connectivity, drive mechanisms, tendency for sand production). In this stage, data analytics can be used to augment data collection programs and accelerate continuous learning by monitoring reservoir response through automation. The vast amounts of data available from the sensors enable modern artificial intelligence methods to derive insights. Realizing production optimization goals in real time require fit-for-purpose models that can collect available data, analyze, and act at the relevant time frequency. This is becoming practical with data-driven methods for problems such as detecting well productivity decline and identifying contributing factors (Sankaran et al. 2017), recommending well workover candidates for production enhancement opportunities, estimating injection rates and well controls to optimize recovery. 
Data-driven analytics are also used in enhanced oil recovery (EOR) and improved oil recovery (IOR) applications as a screening tool to accelerate lengthy evaluations. In water flood and steam flood applications, several successful case studies have demonstrated the efficacy of using data-driven and hybrid models to maximize production on a daily basis, select shut-off candidates, and subsequently optimize overall field development.
[bookmark: _Toc5489459][bookmark: _Toc5489551][bookmark: _ufglqhie7xml][bookmark: _Toc23883859]How Can We Overcome the Challenges to Successfully Apply Data Analytics?
Successful data analytic applications in reservoir engineering begin with a fundamental understanding of the business needs and of the key physics at play. Availability of adequate data that is characterized by good quality is essential for building a robust model and solution. However, data quality remains a big challenge for several companies to produce sustainable solutions, resulting from a variety of data management issues that need to be addressed. Outliers, missing, duplicate, obsolete and unstructured data are just a few of the challenges that must be overcome. Additionally, multiple sources of disparate data need to be integrated into a single consistent version with contextual information. Several companies have embarked on this effort by constructing data lakes, establishing data standards and good data management practices to enable this transformation. Fundamentally, organizations are realizing the value potential of data and need to pay attention to what data is collected, how it is collected, processed and stored for both current and future applications. 
In routine operations, data coverage often is limited to narrow operating ranges. For instance, wells are drilled in reservoirs with favorable rock properties; unconventional wells are completed with relatively less varying completions design and so on. This limits the ability to use these data to develop robust data models that can be adequately extrapolated. It requires careful attention to plan how data is collected through experimental design methods, keeping in mind the type of analysis that needs to be performed.
In general, there is a perceived sense of lack of know-how for approaching data analytic projects in reservoir engineering applications. This is exacerbated by a shortage of adequate staff that merges data science and engineering skills. Having a good grounding in data science and the underlying physical processes will help assess the validity of analytics approach and interpret results appropriately. Further, these new methods modify existing work processes and will require appropriate change management for user adoption and realizing the benefits. Having management support is essential for driving these deep-rooted changes leading to business transformation.
Several of these challenges are not unique to oil and gas industry. Other industries such as retail, banking, insurance, healthcare etc. have successfully leveraged big data to drive efficiency and growth profitably (Hand 2007; Raghupathi and Raghupathi 2014; Sarwar et al. 2017; Goldstein 2018). The oil and gas industry is looking at learning from others and extending this success to oilfield operations. Beyond reservoir engineering, several other technical areas (such as drilling, completions, geoscience etc.) that are characterized by data processing and interpretations could significantly benefit from data analytic methods.
[bookmark: _6lxp1zlq26la][bookmark: _cr0auf7kestu][bookmark: _Toc23883860]Introduction
Data analytics has been broadly applied to a variety of areas within the oil and gas industry including applications in geoscience, drilling, completions, reservoir, production, facility, and operations. However, we limit our discussion here primarily to reservoir engineering applications.
[bookmark: _Toc5485234][bookmark: _Toc5488539][bookmark: _Toc5489463][bookmark: _Toc5489555][bookmark: _Toc23883861]Objectives
The key objectives of this technical report are as follows:
Describe the relevance of data analytics for oil and gas industry, with particular emphasis on reservoir engineering.
Outline the methodology and guidelines for building robust models for reporting, diagnosis, prediction, and recommendations.
Provide an overview with examples of successful applications of data analytics in reservoir engineering and illustrate advantages and pitfalls these methods.
[bookmark: _Toc23883862]Organization of This Report
Chapter 2 outlines the main objectives of this report and introduces data analytics. Successful applications in other industries are provided as a reference to illustrate the digital transformation that is driven by data and other new technologies.
Chapter 3 provides an introduction to the data driven modeling methods and the various stages in the modeling life cycle.
Chapter 4 illustrates the non-technical elements needed to assimilate the results of data driven methods into decision making for businesses. The emphasis here is on business processes and human factors required to enable the successful adoption of data analytics methods.
Chapter 5 discusses a number of published practical applications of data analytics in reservoir engineering, spanning fluid analysis, core analysis, production surveillance, reserves and production forecasting, reservoir surveillance and management, enhanced oil recovery and improved oil recovery, reservoir simulation and unconventionals.
Chapter 6 discusses future trends that address needed advancements in areas related to data, applications, and people for successful adoption of data analytics methods in the long term.
[bookmark: _Toc5488541][bookmark: _Toc5489465][bookmark: _Toc5489557][bookmark: _Toc5488542][bookmark: _Toc5489466][bookmark: _Toc5489558][bookmark: _Toc23883863]Background
While several other industries have experienced significant benefits, wide adoption of data-driven analytics is still in its fledgling stages in the oil and gas industry. Typical reported benefits include reducing costs, improving decision quality, gaining business agility, and driving operational efficiency improvements. McKinsey (2016) estimates key value drivers from applying digital technologies contributing 10-40 % reduction in maintenance costs, 10-20 % cost of quality reduction, 30-50 % reduction in downtime and 45-55 % productivity increase through automation of knowledge work.

Fig. 2.1 shows the digital maturity across industries (Grebe et al. 2018) and in particular, energy industry is in the nascent stages of digital acceleration. Although early, the promises and potential of digitization and analytics to reservoir engineering applications is very exciting.
[image: ]
[bookmark: _Ref13776362]Fig. 2.1—Digital maturity across industries (Grebe et al. 2018).
In a recent industry report (from GE/Accenture), surveys show that 81% of senior executives believe that big data analytics is one of the top three corporate priorities for the oil and gas industry (Mehta 2016). There seems to be a rapid increase in uptake and sense of urgency by several companies to implement data analytic solutions. The major driving factors are the need to improve well performance to reduce costs and major breakthroughs in digital technology that enables commercial viability. As a result, the digital oilfield market is projected to reach $28 billion by 2023 (Market Research Engine 2018), of which data analytics is a major contributor.
Companies have formed new data science organizations and recruited a new breed of technical professionals to solve complex oil and gas problems. This trend is primarily driven by current market conditions that drive companies to become more efficient in the footsteps of other industries.
The confluence of the following factors has been attributed to the crossroads where we are with respect to applying data analytics in reservoir engineering work processes
Explosion of cheap sensors that has accelerated subsurface and surface data collection (i.e., velocity, variety and volume of data)
Advancements in modern data storage and management (including cloud infrastructure)
Breakthroughs in hardware technology that address massively parallel computations (with central processing units (CPUs) and graphical processing units (GPUs))
Innovations in data science algorithms that leverage modern hardware and availability of large volumes of data to improve accuracy
Recent downturn and success of unconventional reservoirs (shale and tight oil/gas reservoirs, called “unconventionals”) in the oil and gas industry that has renewed focus on operational efficiency.
Proven success of data analytics methods to transform other industries
Business operations are becoming increasingly digital in many industries. Other industries (e.g., banking, healthcare, insurance, power utilities, etc.) are not simply creating a digital strategy, but they are digitizing their business strategy.
Banking – The finance industry has been an early adopter of big data and data analytics to drive revenue and reduce risk in the areas of high frequency trading, pre-trade decision-support analytics, sentiment measurement, robo-advisor, anti-money laundering, know your customer (KYC), credit risk reporting and fraud mitigation (Hand 2007; Srivastava and Gopalkrishnan 2015, Cerchiello and Giudici 2016).
Healthcare – Healthcare analytics describes actionable insights that have been undertaken because of analysis of data collected from claims, pharmaceutical R&D, clinical data, and patient behavior for reducing rising costs and providing better benefits across the board in the areas of evidence-based medicine, predictive computational phenotyping, drug screening and patient similarity (Raghupathi and Raghupathi 2014; Archenaa and Mary Anita 2015; Sarwar et al. 2017; Muhammad et al. 2017, North American CRO Council 2017).
Insurance – With data analytics, the insurance businesses have increased accessibility of huge volumes of data that can be converted into customer insights resulting in improved profitability and overall performance in the areas of personalized customer service, fraud prediction and accident likelihood (Wuthrich and Buser 2017; NA CRO Council 2017).
Power Utilities – Aging infrastructure and demand challenges have forced the power utility industry to leverage data analytics to reduce cost and improve reliability such as smart meters, smart grid technology and power outage predictions (Guille and Zech 2016; Goldstein 2018).
Some common goals amongst these industries embracing big data and data analytics involve enhanced customer experience, cost reduction, improving operational efficiency and value optimization. Data-driven insights are increasingly driving decision-making across these businesses. Other typical benefits reported include cross-functional agility, cost resilience, speed, and innovation.
However, there are significant challenges for adapting these technologies by the oil and gas industry. It begins with a proper understanding of what is data analytics and what it can do for the enterprise user.
[bookmark: _Toc23883864]What is Data Analytics?
Data analytics is a process of collecting, cleansing, transforming, and modeling data to discover useful information that can be used to make recommendations for future decisions.
There are four major maturity levels of data analytics:
Descriptive analytics – Describe the problem based on past and current data to understand what is happening. Real-time dashboards or reports are usually used to mine the analytics.
Example: Automatically identify productivity decline in wells and present with supporting evidence.
Diagnostic analytics – Analyze the past and current data to investigate the cause of a problem and explain why it happened. Results are often expressed as diagnostic charts or visuals.
Example: Diagnose root cause of failures by correlating operating parameters with equipment downtime.
Predictive analytics – Analyze likely scenarios to determine what might happen. Predictive forecasts are generated for likely outcomes.
Example: Compute production forecast ranges for a new completion design in a different geological area for an unconventional well.
Prescriptive analytics – Reveals what actions should be taken to maximize utility. This is the pinnacle of analysis that makes recommendations for optimal decisions. 
Example: Automatically compute recommendations for field operations on optimal operational policy for water flooding (i.e., adjusting water injection rates).
Considerable amounts of data are being generated during exploration, development, and operation of oil and gas reservoirs. The amount of data produced by oil and gas fields by various disciplines now exceeds our ability to effectively treat them. The volume, variety and velocity of data that is being generated poses a tremendous challenge to effectively store, process, analyze and visualize them in reasonable timespans.
Data analytics is often used interchangeably with other terms such as data mining, statistical learning, machine learning, artificial intelligence, etc. This is often an exploratory approach in contrast to physical models. However, there are several structured processes and proven methods that can be used to develop robust models for analysis.
[bookmark: _Toc23883865]What is New in Data Analytics?
While statistics is an essential part of the science of data analytics, it goes far beyond that to include concepts and practices from artificial intelligence and machine learning among others. In the past decade, a transformation has occurred to shift to new systems for processing data and the ways data gets studied and analyzed. In 2013, IBM estimated that 90% of the data in the world was created in the last two years. 
Advances in open source, non-relational databases and cloud technologies enabled overcoming the “scalability” challenge that was plaguing the statistical methods. This coincided with the ability to manipulate and process vast datasets with powerful hardware and provided a breath of fresh air to certain class of machine learning algorithms that are inherently data hungry. 
As a result, the number of data science projects exploded, spawning more innovation in new algorithms and clever tweaks to existing algorithms. This gave rise to useful discoveries of data-driven modeling methods that could do a better job of analyzing data, detecting non-linear relationships and interaction between elements.
Today, a functional data scientist defines the problem, identifies key sources of information, designs frameworks for collecting and screening needed data, explores data for relationships, evaluates various modeling strategies for analytics, productionizes the data models and establishes systems to monitor the health of the model. 
[bookmark: _Toc23883866]What Value Can Data Analytics Create for the Oil and Gas Industry?
Companies now realize that data is a vital commodity and its value can be realized through the power of data analytics (Saputelli 2016). Leveraging hidden insights from mining data can help the oil and gas industry make faster and better decisions that can reduce operational costs, improve efficiency, increase production and reservoir recovery. These analytic advantages can improve production gains by 6 to 8 % (Bertocco and Padmanabhan 2014).
While data analytics has broad applications in reservoir engineering, the vast number of wells and pace of operations in unconventionals allow data to play a critical role in the decisions that create value.
Field data collection programs (such as fluid, logs, core, etc.) are augmented with data-driven models to interpolate across the entire field. Not only does this reduce operating costs, but this could also leverage a fit-for-purpose method where physical models are complex or cumbersome (Rollins and Herrin 2015).
Automated mapping programs built using big data solutions enable companies to calculate unconventional oil and gas reserves across vast geological areas and a large number of wells in a fraction of time than traditional manual methods (Jacobs 2016). These tools also allow companies to identify re-fracturing candidates and compare completion designs with offset operators across lease lines.
Continuous data-driven learning allows new wells to be brought online with better performance and reduced cycle time by optimizing drilling, targeting, well spacing, and completions parameters.
In conventional reservoirs, modern data-driven methods provide a pragmatic method to handle vast amounts of sensor data that provide an early warning system for subsurface issues (Wilson 2015; Sankaran et al. 2017). This form of predictive analytics can help companies assess their portfolio efficiently for better business decisions—such as acquisitions, divestitures, and field development.
[bookmark: _Toc23883867]What are the Challenges?
While there is a large explosion in the application of data analytics to several reservoir engineering problems, there is still a lack of common understanding and established guidelines for building robust and sustainable solutions.
Business understanding is fundamental to a successful data analytics project. Proper background in the underlying physical (and non-physical) phenomena helps assess the situation appropriately. It helps in validating assumptions, constraints, risks, and contingencies appropriately. This also helps to determine proper data analytics project goals.
Data Issues
Data-driven discovery often requires validation and interpretation based on fundamental understanding of the data sources, data quality, and the analysis process (Hayashi 2013). Data quality remains a key challenge for several companies, stemming from ad hoc data management practices, lack of data standards, and multiple versions of truth.
Subsurface data is fundamentally laden with uncertainty owing to sparse samples (e.g., fluid, logs, core, etc.) collected in the field. While temporal data from sensors (e.g., in a well) may be ubiquitous, the data may be geospatially sparse (e.g., in a reservoir). In some cases, the data format may not be conducive for real time data analytics. In addition, proper data selection for modeling and analysis is often poorly understood.
Standards to format or store the data are often proprietary or non-existent, leading to challenges in integration and quality control. Data quality is often in question, forcing each engineer to personally investigate datasets and check the data quality, a task that is often repeated multiple times in the same company over the years.
Data integration and re-purposing data with contextual information is often not an easy task. Several companies have now embarked on creating in-house data foundations to address these issues and enable big data analytics.
Model Selection
One of the big challenges is in knowing which modeling techniques would work best for a given problem. Sometimes, this is addressed through an exploratory data analysis and trying a variety of methods through trial and error. Some modeling methods naturally lend themselves to easy understanding, whereas others are confounded and not easily interpretable. The applicability of certain algorithm might also depend on the amount of data available or that is required to be processed.
Data selection and modeling assumptions are fundamental to build robust models that can be used for decision-making. Model evaluation and business success criteria should be clearly defined to have successful implementations. Further, it is not sufficient to answer the question once, but create a solution to empower practitioners to use data in new ways.
Skills Shortage
The technical skills that are required to combine data science, engineering, geoscience, and solve exploration and production business problems are in short supply (Rassenfoss 2016). Additionally, work products created by these data analytics programs often need redesigned work processes and cultural shift for realizing digital transformation.
In oil and gas industry today, the practice of data analytics is relatively new and as such, job responsibilities are somewhat vague with respect to the expectations. Often, there is a lack of consistency in the expectations and definition of the roles between a data scientist, data engineer, business analyst, and a programmer. While some prefer people with specific industry experience, others look for talent outside the industry.
Whereas, several of these challenges are not unique to oil and gas industry, other industries have leveraged big data to drive efficiency and growth. Business leaders in the oil and gas industry are looking at learning from others and extending this success to oilfield operations.

	Summary
· Other industries have reported success in adopting data analytics with benefits such as reducing costs, improving decision quality, gaining business agility, and driving operational efficiency improvements.
· Advances in hardware technologies, cloud computing, data management, new algorithms and explosion of data have earmarked the new age of data analytics over the past few years.
· Several recent applications of data analytics in reservoir engineering have emerged, with potential to reduce operational costs, improve efficiency, increase production and reservoir recovery.
· There are key challenges to the successful application of data analytics in reservoir engineering and its adoption – namely data issues, choice of modeling methods, shortage of skills and proper balance between physical understanding and data-driven methods amongst others.



[bookmark: _Toc23883868]Data-Driven Modeling Methodology
A variety of terminologies have been used in the industry to describe data analytics (sometimes loosely) such as data science, statistical learning, machine learning, and artificial intelligence (AI).
Data Analytics and data-driven models in general is a collection of tools encompassing data collection, validation, aggregation, processing, and analysis for extracting insights from the past, predicting future performance and recommending actions for optimal decisions based on possible outcomes. Techniques used in data-driven models may include computational intelligence, statistics, pattern recognition, business intelligence, data mining, machine learning, and AI (Solomatine and Ostfeld 2008).
The process of discovering insightful, interesting, and novel patterns, as well as descriptive, understandable, and predictive models from large-scale data is at the core of data-driven models (Zaki and Wagner 2014). The main goal is to extract important patterns to gain insights from historical (or training) data using supervised or unsupervised learning methods. In supervised learning, a functional relationship is “learned” between a parameter of interest and several dependent variables based on training data or representative cases. The learned model can then be used to predict the outcome given a different set of inputs. Whereas in unsupervised learning, associations, or patterns between inputs are learned using techniques such as cluster analysis, multi-dimensional scaling, principal component analysis, independent component analysis, self-organizing maps, etc. These methods provide a useful way for classifying or organizing data, as well as, understanding the variation and grouping structure of a set of unlabeled data.
[bookmark: _Toc526715255][bookmark: _Toc526719365][bookmark: _Toc526721906][bookmark: _Toc526721985][bookmark: _Toc526728911][bookmark: _Toc526730162][bookmark: _Toc526730392][bookmark: _Toc526731606][bookmark: _Toc527498140][bookmark: _Toc529535126][bookmark: _Toc529558546][bookmark: _Ref5485726][bookmark: _Toc23883869]Modeling Strategies
A model is a means to describe or understand a system that can sometimes be used to predict future outcomes. Fig. 3.1 shows a model of a mathematical description of the static or dynamic behavior of a system or a process, where a set of equations are used to transform known input parameters to predict outcomes of output parameters. The process of identifying the best model that defines the relationship between the inputs and outputs is known as “learning” (also known by history matching, model calibration or training in the reservoir engineering literature).
[image: ]
[bookmark: _Ref13776428]Fig. 3.1—Model overview.
In general, modeling approaches in reservoir engineering can be broadly classified into the following types:
· Analogs and scaled models
· Full physics models
· Reduced physics models
· Reduced complexity models
· Data-driven models
· Hybrid models
Analogs and Scaled Models
A scaled model is generally a physical representation of the reservoir (rock and fluid) that maintains accurate relationships between important aspects of the model, although absolute values of the original properties need not be preserved. This enables to demonstrate the physical phenomenon reasonably in miniature. Typical examples of these methods include fluid lab experiments in PVT cells to determine fluid properties and core flood experiments to determine rock properties or rock-fluid interaction parameters. 
Analogs are a method of representing information about a source system (target reservoir or field) by another particular system (source reservoir or field). In cases, where necessary information is not available to sufficiently model the reservoir mathematically, analogs may be used to predict outcomes such as reservoir recovery, production profiles, etc.
Full Physics Models
These are first principle-based models that require a fundamental understanding of the underlying phenomena with the processes involved so that they can be represented mathematically in terms of physical equations and numerically as reservoir simulators. While it is impossible to model all the detailed underlying physical mechanisms, these are often referred to as full physics models and are solved using numerical methods. As a part of this process, several physical parameters (often high dimensional) are needed to adequately characterize the system, which are obtained through laboratory or field tests, empirical correlations, or through calibration with field observations. When the underlying processes are complex, formulating these physics-based models are often cumbersome, laborious, expensive or infeasible with limited resources for practical purposes. For example, fluid flow through multi-stage hydraulically fractured horizontal wells in unconventional reservoirs encompasses modeling of fluid flow in a network of rock matrix and fractures (natural and induced), with coupled multi-physics processes including geo-mechanical effects, water blocking, stress-dependent rock properties (permeability, porosity), Darcy or non-Darcy flow, adsorption/desorption, and multi-phase effects, etc.
Reduced Physics Models
When the full physics models are either cumbersome to build (and calibrate), not fast enough for intended modeling objective, or when all the multi-physics are not well understood, a reduced physics model may be built. Typically, this involves simplification of the physical process through some assumptions or modeling only portions of the physics such as material balance models, streamline simulation, neglecting pressure-dependent variability of properties, INSIM and capacitance resistance models (Sayarpour 2008; Chen et al. 2013; Cao et al. 2014; Cao et al. 2015; Holanda et al. 2015; Holanda et al. 2018; Guo and Reynolds, 2019). If the dominant physics is captured, these models can still be used under a variety of conditions with reasonable accuracy and are much faster. Reduced physics methods are well suited for production forecasting and reservoir surveillance methods that require frequent computations based on latest information.
Reduced Complexity Models
While full physics models are more explanatory, they are often computationally intensive and high dimensional, i.e., they have several degrees of freedom that may not be well constrained through adequate field observations. A class of techniques that reduce the model complexity can be used to create a low dimensional model that are faster to compute and still preserves the major dynamics of the modeled system (e.g., upscaling, reduced order modeling, etc.). Typically, these models are derived from the full physics model i.e., the high dimensional model is still the starting point in the generation of the reduced complexity models (He 2013; He et al. 2011a, 2011b, 2013, 2015a, 2015b, 2016). However, the model order reduction is associated with an accuracy loss that needs to be balanced against the computational acceleration and the ultimate model objectives (Chen et al. 2013).
Data-Driven Models
These are often built using data alone and require an understanding of dependent and independent variables. Advancement of machine learning techniques such as representational learning opened new frontiers and enabled AI systems to rapidly adapt to new tasks, with minimal human intervention (Goodfellow et al. 2016). The precise understanding of the physical processes at play is not required. Insights into the processes are derived directly from the data by analyzing patterns. Correlation is not causality, but it can often lead to better understanding of causality. Recognizing recurring patterns can target an area for investigation and help understand the cause and effect process. However, data-driven analytics are often limited to patterns seen in the historical training data and perform poorly when extrapolated to new operating states. Under such circumstances, the models can be updated easily through retraining over new patterns. The speed of data-driven models under favorable conditions are often very attractive and if they tip the advantage in favor of a sound and timely asset decision, they can add substantial business value (Gentil 2005, Al-Anazi and Gates 2010, Wicker et al. 2016, Courtier et al. 2016). Fluid and core analysis methods are rooted in empirical data and data-driven methods lend naturally to develop better models for these applications. Additional examples for production forecasting, reservoir management and enhanced oil recovery are discussed in Section 5.
Hybrid Models
Taking the best characteristics of physics-based and data-driven modeling approaches, hybrid models use physics-inspired relationships between inputs and outputs but allow for flexibility and use low dimensional models to capture localized effects. Sometimes, the starting point of hybrid models are detailed first principle models, which are then reduced to simpler forms through simplifications, feature extraction or field observations. Note that simplification often leads to a less general model but may be used under special considerations. There is an increasing interest in systematically deriving and using hybrid models that are more robust in handling new (unseen) patterns and still offers substantial speed advantage for online applications (Klie 2015). Some of the early research in reinforcement learning showed that some hybrid approaches could require only an approximate model, and only a small number of real-life cases. The objective is to successively “ground” the data-driven policy evaluations using physical evidence, but to rely on the approximate model to suggest local change (Abbeel et al. 2006). Hybrid models may also be particularly useful in multi-scale, multi-physics systems.
There are two new approaches that are gaining popularity to develop hybrid models:
· Physics-inspired feature engineering – Transform inputs in a physically meaningful manner to be used as features for data-driven modeling methods.
· Physical consistency-based regularization – Incorporate physical principles as consistency (or inconsistency) metrics as a regularization term in the objective function as part of the data-driven modeling methods.
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Data-driven models are typically developed iteratively with progressing levels of complexity. Initial implementations might focus on a skeleton version of the proposed model or only span a part of the system. Later iterations include extensions to accommodate a more complete or a more detailed model. Typically, the data-driven model development process involves the following steps.
Define the objectives and purpose for the model
Analyze the system to be modelled to understand the scale, complexity and processes involved
Collect, validate, analyze and prepare the data set available for modeling
Define acceptable accuracy of the model
Select model and proposed modeling approach
Develop a learning model and a modeling workflow
Calibrate model against held out data
Validate model against blind data
Deploy model for intended purpose
Repeat steps 6 through 8 until desired accuracy is achieved, or a satisfactory termination criterion is met.
Repeat steps 7 through 9 if the model is used to support operations (i.e., keep the model continuously refreshed for use over long periods of time to maintain high accuracy).
It is imperative to revisit the above steps if the business or operating requirements change. See Appendix for a detailed description of the model development process.
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Generally, upstream and subsurface processes are complex. Presence of such level of complexity makes it sometimes advisable to build a single global model that adequately captures the system/process behavior. A workaround is segmentation of relatively rich training data into several subsets and build separate specialized models on each segment. The models serve as local or expert models, and this type of modular model development gives rise to more accurate representation of complex systems in the form of a committee machine (Sidahmed and Bailey 2016).
To ensure continuous improvement, new and enhanced modeling algorithms should be considered. Employment of emerging techniques and selection of the best approach should be piloted and assessed against similar competing models by developing multiple competing models.
High performance and in-memory analytics was shown to shorten data-driven modeling cycle time and enabled smart workflows on big data (Holdaway 2014). he emergence of new frameworks such as deep structural and hierarchical learning transformed the way complex physical systems such as subsurface is modeled. Deep learning (DL) is regarded as a class of machine learning techniques that exploit hierarchical layers of non-linear transformations for supervised or unsupervised feature extraction, pattern analysis classification, and prediction. One characterization of this paradigm of models is the multiplicity of stages of non-linear transformation; and learning of feature representation at successively higher, more abstract layers (Deng and Dong 2014).
Key enablers for the advancement and success of data-driven modeling techniques can be attributed to the following primary factors:
· Acceleration of compute processing abilities such as graphical processing units (GPUs)
· Richness and explosion of data set size used for training 
· Recent advances in machine learning and deep learning algorithms
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Uncertainty is a well-recognized problem in modeling. It is multi-faceted, being derived from observation and measurement errors, system variability, ambiguous or conflicting knowledge, lack of complete understanding about the system’s behavior now and in the future, and the modeler’s beliefs and experience. It is important that these uncertainties are addressed during model design and development and are conveyed in association with the results. The workflow within which the model will be used should be designed to quantify the sensitivity of the results to the uncertain inputs so that decisions can take appropriate account of it.
Trained data-driven and machine learning models are used to make predictions for new data drawn from a relatively similar underlying distribution. The process of using the model is distinct from the process that creates the model. All models are bounded, to various degrees, to the environment they were initially designed to operate within. This implies that attempt to operationalize a model designed within specified operating conditions, to a significantly different or changed environment is likely to fail.
Several confidence measures are put in place to ensure the model results are valid and acceptable within an agreed boundary. The upper and lower boundaries of a model outcome provide adequate measure for quantifying risk associated with output. Some of the confidence assessment measures employed during model development include:
· Classical confidence intervals
· Bayesian confidence intervals
· Asymptotic intervals
· Internal confidence intervals

To control for the risks that could affect confidence in model output, it is imperative to establish adequate governance process for effective model risk management.

	Summary
· Reservoir modeling methods fall on a spectrum of modeling strategies ranging from full physics to data-driven methods, including reduced physics, reduced complexity and hybrid models.
· The modeling approach is determined primarily by its purpose, data availability, speed, accuracy, and interpretability requirement.
· The lifecycle of continuous model development and deployment should be considered and can be enabled by supporting technologies (high performance computing, in-memory analytics etc.).
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While several companies are investing in analytics, very few have been able to generate the kind of business impact so far. To benefit from the full data analytics value chain, it must be aligned with the overall decision-making process.
Upstream companies make routine capital allocation decisions (development, operational, mergers and acquisitions, etc.) across a diverse portfolio of assets.
· Development decisions—e.g.  number of wells (or well spacing), well locations, sequence of well drilling, completions practices, secondary or tertiary recovery, etc.
· Operational decisions—e.g. well stimulation, recompletion, choke management, chemicals program, etc.
· Commercial decisions—e.g. acquisition or divestiture of portfolio assets.
Understanding the performance of an existing asset or the potential payback of a prospect is a very essential part of this evaluation (Harding 1996; Denney 2002; Fernandez et al. 2012; Grønnevet 2015; Kaushik et al. 2017). Typically, every company periodically work up these forecasts and economic analyses as part of their planning operations that is often tedious and difficult. However, the value of these analyses can only be realized if they result in effective decisions that are properly executed (Jafarizadeh and Bratvold 2009).
Fig. 4.1 shows the sequence of and the typical decision-making process.
· Collect—Establish systems to access all relevant data, observations, prognosis, and prior information
· Analyze—Automated and/or manual processes to assess all available information
· Forecast—Predict future performance (potential) under expected constraints and operating conditions
· Deliver—Deliver and implement decision within the asset
· Monitor—Evaluate validity of forecast against actual performance
· Verify—Perform retrospective studies to improve decision-making process
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[bookmark: _Ref13776461]Fig. 4.1—Decision making process.
Note that the decision-making process is often cyclical. As new data becomes available, it expands the range and scale of analysis. For example, when an exploration well is drilled, it provides a lot of information (logs, fluids, pressure etc.) to analyze and understand the nature of the reservoir. Further, when a subsequent  appraisal well is drilled, it provides different perspectives on reservoir continuity, fluid gradients in the reservoir, delineation limits etc.
Competitive advantage can be gained by either reaching a better decision through focused intelligence, a faster decision by reducing cycle time, or cheaper decision by lowering associated costs. It is also essential to benchmark asset performance against (internal and external) competitors to refine strategic planning and growth initiatives. Having this micro- and macro-level intelligence using fit-for-purpose reservoir and well performance models forms the cornerstone of successful organizations making sound decisions.
For this purpose, predictive analytics technologies allow for more fact-based decision making (Mohaghegh et al. 2017; Villarroel et al. 2017; Wilson 2017), rather than relying solely on human intuition. These analytic advantages could help oil and gas companies improve production from aging fields and sustain production plateaus from newer assets. Companies with better analytics capabilities are more likely to be in the top quartile for financial performance, make decisions faster than their peers and execute decisions as planned (Brulé 2015 and David 2016).
However, a common challenge is to sift through the abundance of data and find ways to filter out superfluous information to identify major problems or key drivers. Some recent efforts are being made in the communications protocol to enable real-time decision making such as Energistics Transfer Protocol (ETP). ETP is a new communications protocol specification that enables efficient real-time data transfer between rig site, office, and applications. It facilitates data exchange through data standards such as WITSMLTM (for drilling, completions and interventions data), PRODMLTM (for production data from reservoir-wellbore boundary to custody transfer point) and RESQMLTM (for reservoir characterization, earth and reservoir models). However, successful implementation of these standards requires cooperation and discipline amongst vendor and operating companies.
It is also difficult sometimes to define the path to value creation and the implications of technology strategy, operating model, and organization. Often, oilfield data is dirty, uncertain, and of poor quality. Therefore, data analytics may not be suited for all types of problems and needs to be addressed carefully.
As the development and application of data analytics in decision-making processes increase, there is also a growing need for proper validation and review processes to assure quality of the delivered products. Further, the audit trail and traceability of the decision to the underlying data is important. While there are more well-established procedures in most operating companies to understand, evaluate and determine the usefulness of traditional (physics-based) modeling approaches, data analytic models are seen as black boxes. Therefore, it is important to establish model validation processes that are clearly defined and well understood by all stakeholders during the deployment of these models. Promoting the interpretability and transparency of these models is also an important consideration.
An effective approach to address this problem for decision-making is presented in the following sections.
[bookmark: _Toc23883874]Value Creation
The centerpiece for creating value starts with identifying the most valuable applications, which lend themselves naturally to data analytics.
In unconventionals, the vast number of wells, insufficient understanding of underlying complex physics and rapid pace of operations allows data to play a critical role in the decisions that create value. Analytic capabilities allow operators to collect and analyze subsurface data for the following:
Basin-wide characterization to improve geological interpretation that supports actual well performance
New well delivery through continuous learning and optimizing recipe for drilling parameters, well spacing, and completions techniques as new wells come online to improve overall field performance
In conventional reservoirs, data analysis allows quick understanding of reservoir behavior such as reservoir connectivity, performance degradation, identifying drive mechanism and estimating ultimate recovery. Aiding this process is the downhole instrumentation and sensors in modern assets that allow real-time surveillance of reservoir performance and equipment health. Early identification of well productivity issues and reservoir performance can then be addressed through appropriate mitigation steps that reduce downtime and improve overall recovery.
[bookmark: _Toc23883875]Organizational Model
Knowing the value inherent in better analytics helps focus the efforts. This must be complemented by appropriate organizational structure to make effective decisions. A good organizational structure allows decisions to be made at the right time through cross-functional collaboration and puts the right data in the hands of decision makers.
Considering the unconventional example again, this requires several key functions such as land, regulatory, subsurface, drilling, completions, operations, etc. to work together in a fast-paced environment. Each function may generate and analyze a lot of data, but an operating model is needed to weave together the data for a shared view. A common understanding of data (single version of truth) and clear visibility into activities is required to have an integrated view of what is happening in the field.
Some companies address this challenge by deploying an asset-based organizational model, rather than a functional one. In this model, all key functions are deployed into one (often, geographically-based) organizational structure. In other cases, with larger companies, some common functions are organized as a centralized team that serves the assets. Regardless of whichever model that a company adopts, it needs to create a pathway for collaboration among functions, with better systems and processes that allow not only for rapid and integrated sharing of data and insights from analytics, but also for organized decision making with clear lines of accountability.
Decision-making is often influenced by the organizational culture – manifested by the sum of all values recognized and practiced in the company. A data-driven culture empowers all levels of employees to utilize it in their respective functions. Organizations often need to overcome human factors and align critical data KPI’s to appropriate business processes.
[bookmark: _Toc23883876]Execution
Another key ingredient for effective decision-making using analytics is to develop the right capabilities and talent to make the most of the data. Hiring and retaining strong analytic talent is challenging for the oil and gas industry. This is often a scarce resource and the talent profile in demand is not typically found within oil and gas IT functions.
Further, the data foundation that supports high throughput volumes and modern analytics engines require new IT skills to manage cloud and open-source architectures. Companies with strong data analytics capabilities balance domain knowledge (i.e., geoscience, engineering) with analytic skills and are focused on solving specific problems and identifying new opportunities.
Finally, change management of stakeholders is an essential but often overlooked component in this value chain. Changes in the decision-making process must be properly adopted by personnel at all levels for it to transform the business.
Building a well-oiled execution machinery, where decisions are moving faster, aided through appropriate data-driven and traditional analysis, takes time and investment. Therefore, this requires sustained focus by top management.

	Summary
· The decision-making process (e.g. development, operational, commercial) must be completely aligned with the data analytics value chain to realize the full benefits.
· Data analytics may not be suited for all types of problems, especially when the data is limited or of poor quality, and if the results are not easily interpretable or transparent for decision-making.
· An effective approach to ensure data analytics are useful for decision-making is to selectively identify key value-adding business processes supported by the right organizational structure and focus on execution strategy to achieve desired outcomes.



[bookmark: _Ref5486475][bookmark: _Toc23883877]Reservoir Engineering Applications
This section discusses several applications of data analytics that focus on characterizing reservoir parameters, analyzing reservoir behavior, and forecasting performance.
[bookmark: _Toc23883878]Fluid Pressure-Volume-Temperature (PVT)
Fluid PVT (Pressure-Volume-Temperature) analysis is the study of the phase behavior of the oilfield hydrocarbon systems. Phase behavior refers to the behavior of vapor (natural gas), liquid (oil, water), and solids (asphaltenes, wax, hydrates) as a function of pressure, temperature, and composition. The terms PVT and phase behavior are used interchangeably in this report.
Characterization of PVT properties is fundamental to understanding fluid flow through reservoir rocks and flow pipes, including calculation of oil and gas reserves, production forecasts, estimating efficiency of enhanced oil recovery (EOR) methods, surface separator design, and flow assurance, etc.
Establishing the phase behavior of petroleum fluids is usually expensive and challenging. Fluid samples have to be taken carefully and preserved adequately; a meticulous series of experiments and analyses have to be performed to establish the phase behavior of these fluids under varying pressure and temperature conditions (McCain 1990; Danesh 1998; Whitson and Brule 2000; Pedersen et al. 2014).
In contrast, some simple fluid properties, such as density and gas-oil ratio, can readily be determined at minimal expense. Standing (1947) published the first set of PVT correlations based on crude samples collected from California reservoirs. His seminal idea was to use readily available fluid properties such as gas-oil ratio, oil and gas gravity, pressure, and temperature to estimate more complex properties, such as the saturation pressure or formation volume factors. Various authors for gas, bubble point, and dew point fluids have extended this seminal work over the following decades to cover a few basins worldwide.
Initial attempts focused on discovering empirical correlations manually or intuitively that best described the desired fluid properties either as non-linear parametric regressions or through slide rule charts (see Lasater 1958; Nemeth and Kennedy 1967; Standing 1979; Vazquez and Beggs 1980; Glaso 1980; Hanafy et al. 1997; Dindoruk and Christman 2001; Okoduwa and Ikiensikimama 2010; Moradi et al. 2010; Bandyopadhyay 2011; Valle Tamayo et al. 2017).
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[bookmark: _Ref13776488]Fig. 5.1—Typical measurement error for PVT properties (Alboudwarej et al. 2016).

A common element across the above references was that the independent variables remained mostly the same. The authors primarily attempted to find better correlations that fit different fluid sample data sets across various hydrocarbon basins. While some authors recognized the errors introduced through the various processing steps including field sample collection, lab measurements, and contamination, there are not many details available on systematic methods used to address these errors as part of their analyses. Fig. 5.1 shows PVT measurement error properties. 
Fig. 5.2 shows where Valko and McCain (2003) analyzed worldwide oil samples (1,743 sample records) and published absolute average relative error (AARE ~12% to 45%) in bubble point pressure estimation by several popular empirical correlations. In addition, some correlations worked better for certain fluid properties and fluid types than others. This led to data-driven estimation of PVT properties to extract key features and reduce prediction errors.
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[bookmark: _Ref13776522]Fig. 5.2—Comparison of published bubble point pressure correlations (Valko and McCain 2003).
As data-driven modeling techniques evolved, several authors have proposed the use of advanced machine learning techniques to address this problem, methods include:
· Artificial neural networks (Elsharkawy 1998; Abdel-Aal 2002; Osman and Al-Marhoun 2005; Alimadadi et al. 2011; Alarfaj et al. 2012; Alakbari 2016; Adeeyo 2016; Moussa et al. 2017; Ramirez et al. 2017)
· Support vector machines (El-Sebakhy et al. 2007; Anifowose et al. 2011)
· Non-parametric regression (McCain et al. 1998; Valko and McCain 2003).


Nonparametric regression differs from parametric regression in that the shape of the functional relationships between the response (dependent) and the explanatory (independent) variables are not predetermined but can be adjusted to capture unusual or unexpected features of the data. Fig. 5.3 shows the non-parametric regression results for bubble point pressures (AARE ~10.9%), which compare favorably with measured quantities (Valko and McCain 2003). This method circumvents the lack of measurement of stock tank gas rate and specific gravity and estimates useful PVT properties from routinely available field operations data. Similar improvements were reported for solution gas oil ratio (AARE ~5.2%) and gas gravity (AARE ~2.2%).
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[bookmark: _Ref13776576]Fig. 5.3—(a) Calculated bubblepoint pressures compared with measured bubble point pressure for 1745 data records, (b) Average absolute relative error (AARE) for calculated bubblepoint pressures compared with other correlations (Valko and McCain 2003).
Other recent authors have extended the effort to propose a stochastic description of the fluid (Alboudwarej and Sheffield 2016) for PVT uncertainty assessment. In unconventional assets, several operators use data-driven model sometimes combined with equation of state (EOS) modeling to establish a correlation between readily available field data, such as oil gravity or gas chromatography, and other derived fluid properties such as formation volume factors, viscosity, saturation pressure, etc. (Yang et al. 2014).
Several authors present comparable or better AARE estimates of PVT properties using data-driven approaches for the fluid samples considered. In general, they consider routinely measured fluid properties from the field (e.g., GOR, pressure, temperature, API gravity, gas gravity) and train a supervised model (neural network or support vector machine) during the learning phase. The forward model is then validated and used to predict against the test data set. In contrast, the non-parametric regression method (based on alternating conditional expectation) establishes a non-linear transformation on the input and output variables to discover the functional forms determining their relationship.
It must be noted that most of the published work listed above do not publish the forward model that can be independently verified by a practitioner on new data sets. In these cases, the results should only be considered as an investigation of the data-driven methods as applied to the specific fluid data set used in the study. In cases where these models are available, they must be tested on a blind data set with careful consideration of the assumptions and validity range before being used. 
Supervised learning techniques for PVT estimation, though promising, are dependent on the availability of adequate and representative data set. Therefore, when limited fluid samples are available within a field, analog field data could be carefully selected to augment the data set for better results.
In cases where large sample size of PVT data sets is available (such as unconventional or mature fields), better results may be obtained by training the regression or machine learning models on field-specific data. Wherever possible, one must examine the possibility of using common EOS model across these data sets.

	Summary
· Data-driven modeling techniques extend the practice of estimating fluid properties through empirical correlations through a systematic way of deriving relationships from data.
· Supervised learning techniques may be used when sufficient field-specific PVT data is available.
· Published data-driven models for estimating PVT properties should not be used without checking on the assumptions and population statistics of underlying data used for training (e.g. ranges of GOR, API etc.)



[bookmark: _2bn6wsx][bookmark: _Toc23883879]Core Analysis
Core data represent and important input in any reservoir model. Facies, porosity, permeability, relative permeability, and capillary pressure are amongst the most common parameters that are extracted from routine or standard core analysis. Due to the relatively high cost of core collection and analysis, data sets are usually relatively sparse. A common practice is to establish a correlation between core and log data that can then be applied more generally across the field. Neural networks have been used with great success to that end for over 20 years (Mohaghegh et al. 1995) but the industry has recently seen a renewed interest in applying newer machine-learning algorithms to improve the correlations and extend the approach to more challenging geological environments.
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[bookmark: _Ref13776618]Fig. 5.4—Core permeability vs. petrophysical log properties.
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[bookmark: _Ref13776629]Fig. 5.5—Match between predicted and measured permeabilities.

Mohaghegh et al. (1995) published the first application of Artificial Neural Networks (ANNs) to correlate petrophysical logs and core properties. Fig. 5.4 presents the cross plots between permeability values determined from core analysis and the corresponding bulk density, gamma ray, and deep induction properties determined from wireline logs. Although one would be hard pressed to visually establish a correlation, an ANN applied to the problem was able to identify relevant patterns in the data set and provided a robust correlation that could be used as an artificial petrophysical log of permeability. The machine-learning based permeability was compared to the core permeability on blind test samples and showed an excellent correlation (R2=0.963). Fig. 5.5 shows the comparison between the core permeability and the model based on the ANN.
Several authors have investigated the use of different machine learning methods for this problem and have documented their performance. Al-Anazi and Gates (2010) and Shahab et al. (2016) have for example reported the strong performance of algorithms based on support-vector-machine over different types of neural networks for this problem.
The approach of predicting core data from log curves has been extended to other data sets as well. For example, Negara et al. (2016) published a workflow using support vector regression to correlate total organic carbon (TOC) obtained by core measurements to a suite of well log data (gamma ray, acoustic, resistivity, bulk density, and elemental spectroscopy, etc.).
Capillary pressures represent another type of data typically derived from core measurements that has been modeled using machine learning models. Mohammadmoradi and Kantzas (2018) for example presented a study where they employed an ANN to establish a correlation able to predict contact angle from the concentration of calcite, clay, quartz, and TOC. There work is focused on understanding the wettability of unconventional reservoirs where imbibition might play a significant role in fracturing fluid uptake in the reservoir rock.
In a variety of petrophysical analysis efforts, machine learning algorithms are used to accelerate the manual interpretive work performed by experts. Many authors have documented workflows where large amounts of data were collected and a small fraction was analyzed manually by experts to establish a training data set. A machine-learning algorithm is then calibrated on the training set and used on the rest of the data to complete the analysis. Sidahmed et al. (2017) used a deep learning algorithm to perform automated rock facies classification from a standard petrophysical log suite. Hoeink and Zambrano (2017) used logistic regression to determine shale lithology from log data. Tang and Spikes (2017) used a neural network to perform image interpretation of scanning electron microscopy (SEM) data, segment the images, and determine the mineralogy of different features. Bestagini et al. (2017) used a gradient boosting classifier to automated facies identification from well log data. Budennyy et al. (2017) used decisions trees with image pre-processing, k-means clustering and principal component analysis to perform rock type and mineral composition classification on a data set of petrographic thin sections.
However, lab estimation of core properties for unconventionals with very low permeability is still a challenge and remain both a problem and opportunity for data analytics applications. 

	Summary
· Data-driven modeling techniques may be useful in both estimating rock properties and identifying facies, when relevant training data is available.
· Upon proper calibration, a common application is to predict (infrequently available) core properties from (more commonly available) log data.



[bookmark: _Toc529449983][bookmark: _Toc23883880]Reserves and Production Forecasting
The economic success of reservoir exploitation relies heavily on resource estimations and production forecasts. The quality of these forecasts often defines the success or failure of many projects (Gupta et al. 2016). To provide reliable estimates of future production rates, all available geological and engineering data should be integrated. To account for the uncertainties surrounding these estimations, the evaluation of oil and gas resources, expected production, and reserves has been transitioning from deterministic to probabilistic. Probabilistic methods offer the advantage of capturing the variability of geological or engineering factors and help quantifies the uncertainty ranges associated with the estimates.
[bookmark: _Toc529449984][bookmark: _Toc23883881]Resource and Reserves Calculations
Empirical oil recovery correlations were initially developed by the American Petroleum Institute (API) on sandstone reservoirs in the United States. Arps (1945) later adapted these methods by developing decline curve analysis. Since then, simple oil production forecast equations have continuously been developed and the development of data analytics methods has recently revived these efforts. Correlations have for example been proposed to estimate the well’s peak rate and expected ultimate recovery (EUR) using information such as hydrocarbon content, depth, well length, and thickness. These methods offer efficient well-by-well analysis for scenarios where it is not practical to perform decline curve analysis (DCA) on each individual well (Sharma et al. 2013). Other authors have used multiple linear regression models to estimate the recovery of unconventional wells using well-design parameters (Cunningham et al. 2012). Advanced analytical models have also been employed when richer data sets were available. For instance, ANN have been used to estimate EUR from rock properties, well characteristics and completion parameters (Javadi and Mohaghegh 2015). They have also been employed to target production zones using lithological attributes (Da Silva and Marfurt 2012). 
Data analytics applications are not limited to production forecasting of existing wells or assets. Some models have been used to estimate the recovery of field prior to their development, using exploration and appraisal data sets. Sometimes analytics models are used in conjunction with physics-based models, such as reservoir simulation and are used to create surrogate models or proxies.
Data-Driven Expected Ultimate Recovery (EUR) Prediction Methods
The expected ultimate recovery is a key driver for the economic viability of an exploration and production (E&P) asset, but EUR estimates are often associated with significant uncertainties (Lin et al. 2012) especially during the exploration and appraisal phases of a project.
To improve the early quantification of EUR, a data-driven methodology was proposed to estimate the variance in EUR estimated during the appraisal phase. A multi-variate statistical method (partial least square regression) and optimization procedure was used to correlate known EUR values calculated during appraisal to data describing the characteristics, complexity and definition level of 50 deep-water Gulf of Mexico oilfields (Gupta et al. 2016). The approach delivers a robust EUR estimation (R2 = 73% on blind data sets) and identifies the key drivers impacting the variance.
Reservoir Analogue Selection
Reservoir analogues provide valuable information to support development decisions. They are often used to evaluate development scenarios, estimate recovery factors, or evaluate the potential economic viability of development projects (Dursun and Temizel 2013). Data analytics applications have recently been proposed to improve the identification of analogues.
Case-based reasoning (CBR) has recently been employed to identify reservoir analogues using continuous as well as categorical attributes integrated using distance metrics and similarity measures (Dursun and Temizel 2013).
A common challenge in selecting analogues is the treatment of missing information, which introduces uncertainties. It is therefore important for analogue selection methodologies to characterize these uncertainties and account for them when estimating the field production potential by estimating an associated risk. Various data-driven approaches have been proposed to that end and their performance was tested against analogues selected by experts (Perez-Valiente et al. 2014). Decision trees were found to be the most effective algorithm for categorical properties (Fig. 5.6), while regressive support vector machines produced the best results for numerical properties (Perez-Valiente et al. 2014).
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[bookmark: _Ref13822600]Fig. 5.6–Performance machine learning algorithms for categorical and numerical parameters (Perez-Valiente et al. 2014)
The proposed methodology shows how data analytics can be used to identify analogues for newly discovered reservoirs with limited information. An important additional outcome is the estimation of unknown properties such as recovery factor and production mechanism, and their associated uncertainties.
Recovery Factor Benchmarking
A key objective of a reservoir recovery factor benchmarking study is to support decision making on an ongoing development, well before the entire program has been executed. Possible applications include early confirmation of successful well placement, early indication of the impact on well performance because of changes to drilling and stimulation procedures and a conditional probabilistic outlook of long-term well behavior to better define well/field economic scenarios and to guide reserve bookings.
Various authors have proposed benchmarking methods to enhance the forecasting of long-term reservoir and well recovery performance, based on metrics of short-term well behavior (Van Den Bosch and Paiva 2012). The typical metrics include measured peak production rates and cumulative volumes at various times. The process is refined continuously as new information becomes available and the added value of the information is quantified. A performance indicator summarizes the range of predicted outcomes into a single number quantifying the degree of misclassification, from zero, describing no predictive capability to 100, describing a perfect prediction. This approach offers a transparent and unbiased benchmarking of the system's prediction capability for each metric (Van Den Bosch and Paiva 2012).
The lessons learned from a global analogue reservoir knowledge base can be used to identify opportunities for reserves growth of mature fields via benchmarking (Lu et al. 2016). 
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[bookmark: _Ref13776686][bookmark: _Toc529450080]Fig. 5.7—Comparison of EUR predicted from a response surface model and a semi-analytical model.
A probabilistic method using surface response model was implemented to assess hydrocarbons in place, expected ultimate recovery and recovery factor for shale gas reservoirs like the Marcellus shale (Richardson et al. 2016). Fig. 5.7 shows a 25-year EUR response surface model created using a semi-analytical model. The presented analytical expression of EUR is a linear combination of key reservoir parameters. Both in-place volumes and ultimate recovery models were coupled during Monte Carlo simulation to produce a probability distribution for the recovery factor.
EUR Assessment Using Machine Learning Techniques
Numerical simulation offers non-unique solutions on history-matched calibrated models. Such model-solutions ensemble has a direct impact on business decision making such as EUR assessment and reservoir drainage optimization. Multi-realization history matching (MHM) techniques have been applied to quantify the EUR uncertainty. Because of the uncertainty and associated to calibrated models and computationally intensity requirements, machine learning techniques have been implemented to facilitate the investigation and further reduce reservoir performance uncertainty. The uncertain parameters typically include reservoir static properties, hydraulic-fracture properties, and parameters defining dynamic properties such as relative permeabilities, etc.
As an example, a method to assess EUR for several wells in the Permian liquid rich shale reservoir field (Guo et al. 2017) has been proposed. Each realization of the initial ensemble was calibrated iteratively using a Distributed Gauss-Newton method (DGN). The responses generated during iterations are added to a training data set, which was then used to train an ensemble of support vector regression (SVR) models. The sensitivity matrix for each realization is estimated analytically from the SVR models and used by the DGN to generate improved search points and accelerates convergence. The integration of SVR in DGN allowed 65% of the simulation runs to be saved compared to the traditional DGN without SVR. This increased efficiency comes from the use of machine learning methods that continuously integrates the simulated results from the previous iterations. This is an example of how data analytics methods can be used in support of numerical simulations to provide faster EUR forecast and uncertainty ranges.
[bookmark: _Toc529449985][bookmark: _Toc23883882]Production Forecasting
Today, engineers can choose from a gamut of production forecasting techniques. Although numerical simulation still plays a critical role in providing forecasts of hydrocarbon production, some data analytics techniques have exposed a new world of possibilities and insights not previously revealed by physics-based methods. Commonly, reservoir engineers use field measurements for reservoir model calibration, so their predictions agree with historic production. Calibrated models are then used to forecast future production to identify optimal production strategies that are resilient to reservoir uncertainty. The objective of including data-driven analytics in the forecasting process is to guide the investigation of reservoir scenarios and production strategies. It is important to rapidly understand how simulation results change with model parameters controlling the reservoir description and operating conditions.
“All forecasts are predictions, as we can use a model to simulate the future; but not all predictions are forecasts, as when we would use regression to explain the relationship between two variables, or using a model to simulate the past”.  Forecasting requires logic, an ability for quality assessment of forecasting approaches, and few rules for effective forecasting. 
We should consider forecasts to allow the decision maker to:
· Exercise strategic judgment
· Identify key patterns and seasonality
· Embrace those items which cannot be classified
· Look at more past or historical data to make sense as fewer data elements would not make any meaningful forecasting, etc.
We also need to understand when to make a combination of forecasts or forecasting methods by using ensembles and when not to forecast at all. Forecasting and selecting an appropriate method for doing forecasting will always be interesting blend of art and science in addition to our judgement and practicality (Mishra 2017).
Analytical Models
Using traditional reservoir body of knowledge, engineers estimate theoretically expected well productivity and hence predict reservoir flow rates, using approximations on reservoir dimensions, energy, rock and fluid properties, and the impact of reservoir exploitation decisions including drainage architecture and recovery methods. In addition, production measurements and analogue reservoir response have the power to enhance the confidence of these estimated.
Traditional analytic reservoir engineering methods include material balance and production rate analysis. Most of these methods are derived from first principle models, simplified using empirical observations and calibrated to direct measurements including direct measurements of production rate and pressure data. The two most common analytical models used for production forecasting are decline curves and type curves.
One of the oldest and most frequent data-driven method for production forecasting are the ones related to decline curves including harmonic, hyperbolic, and the most common, exponential (Arps 1945). The popularity of these methods is due to their simplicity: a few parameters are sufficient to calibrate the model and provide a forecast of the future well production behavior. 
Decline curves have been used in many instances for production forecasting at well and reservoir level. They can be used to determine expected remaining recovery and are quite useful to describe the typical behavior of wells by determining a representative decline curve. Decline curve analysis is the most common method used to estimate reserves and resources.
The use of decline models is however limited to estimate production behavior for known operating conditions and is inappropriate for optimizing reservoir management strategy in terms of well location, wellhead pressure control, or number of wells. 
Type curves are powerful graphical representations of the theoretical solutions to transient and pseudo-steady state flow equations. Reservoir engineers are usually challenged to find a match between historical reservoir performance (e.g., rates and pressure) and a theoretical type curve (Agarwal et al. 1970; Fetkovich 1980; Carter 1985; Palacio and Blasingame 1993), and subsequent works. Type curves are usually represented in terms of dimensionless variables including dimensionless pressure, rate, cumulative production, time, radius, and wellbore storage.
Matching becomes a little bit of an art instead of science because real data may be noisy and may contain outliers. In addition, actual reservoir architecture may not fit exactly the assumption made for the available models. 
In this sense, type-curve analysis becomes a key area where machine learning and AI can be used to augment engineers’ knowledge. Pattern recognition and case-based reasoning has been used to derive the parameters of type-curves (Saputelli et al. 2015).
Reservoir Simulation Proxies
Engineers routinely use reservoir simulation models to forecast reservoir and well production. The physics-based models are calibrated against field data and are frequently used to support field development and other reservoir management decisions. 
Analyzing complex reservoir simulation models is challenging. The standard approach that consists of visualizing saturation and pressure ﬁelds or production proﬁles is time-consuming and often fails to clearly establish the relationship between the input and response parameters.
Proxy models approximate the simulator response parameters from the inputs. A proxy is a simplified analytical model or machine learning model used to describe a physical phenomenon within a parameter space. These models can be as simple as polynomial regressions of field production rates subject to changes in operational conditions or reservoir parameter uncertainties. They can also be as complex as emulating the entire output from a reservoir simulator, including the pressure and saturation results in each grid cells. These simpler models are often referred to as response-surface and the more advanced-models are sometimes called surrogate models. 
These models have been applied to a range of problems, from steam-assisted gravity drainage (SAGD) processes, (Queipo et al. 2001) to well target optimization (Yeten et al. 2005). The choice of experimental design and response surface methodologies have an impact on the outcome. Fig. 5.8 shows the comparison of estimation errors amongst multiple response surface methods for various experimental design choices for a reservoir case to predict oil production curves from simulation experiments. The authors conclude that the central composite design (CCD) performs better than similar density D-optimal design, while neural network performed poorly in most cases.
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[bookmark: _Ref13823318]Fig. 5.8–Comparison of estimation errors amongst various experimental design and response surface methods (Yeten et al. 2005)
Learning from physics-based models offer two key advantages. First, a broad and copious data set can be generated to help train the surrogate models. Second, they can be made to properly learn the required physical relationship at play. In addition, when trained these models can be interrogated in a matter of seconds as opposed to hours for reservoir simulation models (Mohaghegh et al. 2006). Surrogate models can be applied to coupling with surface model in integrated asset models, real-time optimization, real-time decision making, as well as analysis under uncertain conditions. 
Reduced Physics Models
Fluid flow models can be based on first principles (e.g., conservation of momentum, mass, and energy), empiricism, or a combination of both. First principles can be combined with constitutive equations to generate models that are valid over a wide range of operating conditions. However, they may be cumbersome to develop and manipulate. Empirical models, on the other hand, may be easy to develop, but may not be accurate outside the range of data used for their calibration. Reduced-Physics models (described in Section 3.1) combine first principles with empirical constitutive equations (e.g. Darcy’s law, ideal gas law). These models are often easier to develop and manipulate than raw first principle models and maintain their applicability outside of the range of data used for their calibration. 
Engineers for example use reservoir simulation to identify the location and size of un-swept regions, to quantify the degree of communication between injectors and producers and to estimate the recovery efﬁciency in a region of the reservoir. These insights allow engineers to propose changes to reservoir management strategies designed to optimize the reservoir performance.
These models rely on a multi-variate reservoir model to represent the variation in well and reservoir behavior in time and space and they often combine data-driven and physics-based elements. Several multi-variate reservoir modeling techniques have been published. Here we discuss a recent model that has gained a lot of traction over the past decade or so, namely Capacitance-Resistance Models (CRM). CRMs get their name from an analogy between fluid flow in porous media and current flow in electrical system (Bruce 1943). The derivation of CRM is based on enforcing mass balance on the drainage volumes of producing wells and can account for the influence of nearby injectors and the changes in the well operating conditions. These models solve similar equations that are used in reservoir simulation, but instead of using the reservoir pressure, the models directly estimate the well rates. This approach transforms the set of second-order partial differential equations usually solved in reservoir simulators into a first-order ordinary differential equation with an analytical solution. This simple method is fast enough to be used in reservoirs with high well counts and has been applied to water and CO2 injection problems (Albertoni and Lake 2003; Yousef 2006; Sayarpour 2009a, 2009b; Weber 2009; Salazar-Bustamante et al. 2012; Holanda et al. 2015; Gladkov et al. 2017).
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[bookmark: _Ref13828440]Fig. 5.9 – Overall performance match with different fractional flow models, Reincecke reservoir (Sayarpour et al. 2009a)
In effect, CRM is the extension of the exponential decline curve model that accounts for changes in operational conditions and for the influence of injectors. The pressure effects are estimated using the CRM equation. The saturation effects are usually modeled using empirical fractional flow models. The model offers a prediction of the well performance based on its historical decline as well as its production response from nearby injection that is quantified using connectivity factors with nearby injectors and parameters for an empirical fractional flow model. Fig. 5.9 compares the performance of CRMT against other traditional reservoir engineering methods such as empirical power law fractional flow model (EPLFFM) and Buckley Leverett based fractional flow model (BLBFFM).
Compared to reservoir simulation, these models offer the advantage of being extremely fast to run and calibrate. Compared to simpler analytical models, they account for critical aspects of the reservoir management strategy and can be used effectively to support field optimization decisions. Compared to purely data-driven models, they offer the advantage of being based on physical relationships, which allow them to be used with confidence for moderate extrapolation.
More recently, Molinari et al. (2019a, 2019b) illustrated a hybrid data and physics-based modeling approach that uses the diffusive time of flight (DTOF) concept to estimate productivity-based production forecasts for unconventional or tight reservoirs. The method uses the DTOF and depth of investigation concepts to calculate drainage volume as a function of material balance time using only bottomhole pressure and rate data. By combining this with generalized material balance, pressure depletion and productivity index evolution over time are computed that provide a productivity-based production forecast. This method is tested on several hundreds of wells and is shown to perform better than standard rate decline based forecast (Fig. 5.10), especially under varying surface conditions (i.e. changes in tubing pressure control). The method also serves to be more practical than analytical or semi-numerical model-based approaches that cannot be scaled to every well in the field.
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[bookmark: _Ref17659172]Fig. 5.10 – Dynamic IPR curves for every monthly bin (historical, current and forecast) (Molinari et al. 2019a)
Data-Driven Models
Top-down data-driven reservoir models are data-driven models directly calibrated against field data (Gomez et al. 2009). Their key advantage is their complete flexibility in learning patterns that are challenging or time-consuming to model. Once trained, they can be interrogated almost instantly, which is ideally suited for optimization or sensitivity studies. The downside of top-down data-driven reservoir models is that they require an extensive data set to be trained and because they do not have embedded physical relations, extrapolation should be done with caution.
These models can forecast reservoir and well performance in time and space with a certain degree of confidence and granularity. They can incorporate a broad range of data (pressure, temperature, well logs, core data, well flow tests, raw and interpreted seismic, and production/injection history), and account for both development activities (well count, location and trajectories, stimulation jobs) and the operational decisions (e.g., fluids injected, well targets, choke settings).
Statistical Time-Series Forecasting 
Purely statistical methods are sometimes used to forecast time-series data. This approach allows time dependent parameters to be predicted without the need to assume an underlying physical model. Common applications of this approach include the forecasting of rates and pressures at the reservoir or well level, production ratios, such as gas-oil ratio (GOR) or water cut, well productivity index, flowing wellhead or downhole pressure or temperature.
Most time-series are described using two basic components: trend and seasonality. The trend represents the general evolution over time. The seasonality is a recurrent pattern that occurs at various frequencies, for example, daily or seasonal temperature variations. Models often include an additional noise component, usually centered on the trailing average. Several approaches exist for such problems that are well documented in the statistics and financial modeling literature (Box and Jenkins 2008). 
As with all statistical models, a good fit to the data does not necessarily indicate a robust forecast. With enough parameters, a perfect fit can usually be obtained but such a model would often fail to identify the key pattern in a time-series and would offer a poor forecast. To alleviate this issue, a validation strategy should be used through data partitioning. A blind test can thus be developed to quantify the predictive power of a model.
These models should only be used to forecast data within a stationary range, i.e., within a period where the data is statistically constant. This situation is met in practice for pseudo steady-state conditions or relatively short production periods, past which the forecast should lose reliability.
Statistical forecasts offer the advantage to produce a confidence interval around the base prediction. Understanding the upper and lower expectations of a forecast might be of high interest in practice for some applications to estimate the required name-plate capacity for facilities for example.

	Summary
· Data analytics has revived and overcome the limitations of traditional forecasting methods (e.g. decline curve analysis, analogs, type curves) that may not be readily applied outside of their strong assumptions.
· Reduced physics or hybrid models offer the advantage of being extremely fast to run and calibrate compared to numerical methods, while still retaining the accuracy and ability for moderate extrapolation.
· Pure data-driven models need to be used with care for forecasting within stationary ranges based on the training population statistics.


 
[bookmark: _Toc529449986][bookmark: _Toc23883883]Reservoir Surveillance and Management
Reservoir Management is concerned with maximizing the productivity and profitability of oil and gas fields throughout the full life of the asset, from selecting the right development strategy to optimizing a maturing field all the way to identifying the right divestiture or abandonment option. 
Reservoir management is therefore a decision-making discipline. These decisions are often supported by a variety of models. Depending on the application, the models can be simple such as heuristics-based correlations, analytical solutions or simplified physical representation or can be as complex as advanced machine-learning algorithms or full-physics numerical models. 
Every model used for decision making has a specific data requirement for its calibration. Reservoir Surveillance is the tactical effort designed to collect the right data to support an effective Reservoir Management strategy. An optimal surveillance strategy maximizes the amount of information collected while minimizing the associated cost. Surveillance plans are usually concerned with measuring the nature or current state of the field. 
Over time, the continuous reduction of sensor costs and the ever-expanding capabilities of data analytics methods have enabled significant improvements in Reservoir Surveillance and Reservoir Management efforts. This section presents a few published examples showing how data analytics has been used to improve Reservoir Surveillance and Management. 
[bookmark: _Toc529449987][bookmark: _Toc23883884]Reservoir Surveillance
Capturing the right data is essential to enhance our understanding of the reservoir and associated wells and facilities and to support the critical reservoir management decisions to be made. As the reservoir matures, the type and frequency of data that needs to be collected evolves. Early in the field life, surveillance is usually focused on reducing subsurface uncertainties. Later on, data acquisition tends to focus on monitoring wells and surface facilities for optimization purposes.
The data acquisition frequency is dictated by the physical system being monitored. Static properties can be estimated using one-time measurements, but dynamic system might require real-time monitoring at high frequencies (Alimonti and Falcone 2004), using measurement systems such as permanent downhole gauges for pressure, clamp-on acoustic sensing for sand, optical fiber for production allocation or microseismic acquisition to monitor hydraulic fractures. 
The reduction in sensor costs and the introduction of new measurement devices has increased the volume, frequency and diversity of data that is being collected. Data analytics have helped Reservoir Surveillance in two general directions: the automation of routine analysis and the assimilation on complex datasets. 
Automated Interpretation of Surveillance Data 
Data analytics methods are sometimes used to accelerate or automate the analysis of surveillance data. Pressure or rate transient analysis (PTA/RTA) is a common approach used to analyze a variety of well and reservoir performance factors such as well productivity parameters, well interference, reservoir extension and connectivity (Lee et al. 2003).
Permanent downhole gauges and multi-phase flow meters made high-frequency pressure and rate data available at all time and enabled the analysis of transient behavior for both planned and unplanned well shut-ins, which quickly translated to an increased workload for engineers. 
New algorithms are actively being developed to automate such analysis. Sankaran et al. (2017) present a field application of a technology platform developed to analyze transient well behavior. They use a variety of algorithms to automatically various well periods, such as shut-ins or ramp-ups and apply a machine learning algorithm originally developed by Tian and Horne (2015) to perform the transient analysis. The kernel ridge regression method that was applied is a kernel method that uses a regularization term to avoid overfitting. The kernel method itself allows for a flexible mapping of the input parameters into non-linear attributes and offers an efficient formulation in terms of computational efficiency. The method proposed proves to be vastly superior to classical regression approaches both in terms of speed and robustness in the face on complex reservoir behavior. The methodology was used by Sankaran et al. (2017) to estimate productivity indices from permanent downhole gauge data and Fig. 5.11 shows the close match between measure and estimated productivity indices.
A significant amount of time has historically been spent by engineers locating the data required for analysis. Routine engineering analyses, such as pressure transient analysis or decline curve matching are also time-consuming tasks that are subject to the bias of the individual performing the interpretation. Automating such work offers the dual advantage of ensuring consistency in the analysis and allowing engineers to spend more time on problems that require deeper analysis.
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[bookmark: _Ref13828952]Fig. 5.11–Machine learning based well productivity estimation (Sankaran et al. 2017)

Surveillance Data Assimilation
Surveillance data should be assimilated as quickly as possible to maintain up-to-date reservoir models. The complexity of the reservoir model constrains how quickly new data can be integrated. Analytical models such as material balance or decline curves are fast enough to be updated almost instantaneously but they rely on a simplified representation of the problem which often limits their applicability. More general methods such as reservoir simulation can require months of work for an updated history-match to be completed. For decades, this posed a challenge for large mature waterfloods. Today, several alternative data-driven models have been developed and used successfully, ranging from reduced-physics models such as streamline-based methods (Thiele and Batycky 2006), Capacitance-Resistance models (Sayarpour 2008) or tracer-based approaches (Shahvali et al. 2012) all the way to fully data-driven models such as the neural networks used by Nikravesh et al. 1996. The next section will cover this topic in more details.
In addition to being used to accelerate data assimilation efforts, data analytics methods have been leveraged to integrate complex datasets. Reservoir surveillance usually includes measurements as varied as seismic and microseismic surveys, well logs including image logs, cores, fiber optic data, pressure and production data (e.g. Raterman et al. 2017). Data-driven models offer a flexible way to account for eclectic sources of information that do not necessarily have a systematic framework for integration into standard physics-based models. Such an approach is used heavily in unconventional reservoir modeling. Methods such as Multi-Variate Regression have been used to predict the performance of unconventional wells from varied datasets that could not be integrated into conventional physics-based models (Ciezobka et al. 2018, Burton et al. 2019). These models are used by unconventional operators for business planning and development decisions.
As new methods emerge for processing and analyzing real time data, new data types (besides rate, pressure and temperature) are also emerging that capture different physics (such as fiber optic DTS/DAS, tracers etc.).
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Common applications of data analytics to Reservoir Management have targeted two main objectives: the systematic identification of field development opportunities and the automation of reservoir optimization efforts.
Opportunity Identification and Ranking
Various actions can be taken on a given field to increase its recovery or financial value: drilling new wells or sidetracks, optimizing or upgrading existing artificial lift systems, starting or improving an injection strategy, etc. Traditionally, it has been the role of the asset team to identify and prioritize these field improvement opportunities. The work is typically conducted by multi-disciplinary teams using established workflows to analyze field data, apply heuristics or create models to determine whether an action is feasible and financially accretive. Aging assets tend to grow in complexity, with an increasing well count, more mature reservoir conditions, depleted pressures, increasing gas-oil ratios and water cuts, aging facilities and wellbores that can include various vintages of artificial lift systems or completion designs. Required maintenance operations are also multiplying, making it increasingly challenging to find the time to identifying new opportunities.
Data-driven methods have been used successfully to automatically identify, categorize, quantify and rank value creation opportunities. The various heuristics and workflows traditionally used by asset teams can be programmatically implemented and applied systematically to all wells, thus methodically testing all known opportunity categories. Brown et al. (2017) present proven workflows previously developed through experience and applied manually that have been replaced by data-driven equivalents to identify field development opportunities. For example, a pay-behind-pipe identification algorithm was developed that automatically processes well logs to identify highly productive zones. Historical perforations are then analyzed with historical production data to automatically define the amount of oil that has been produced from each perforation over time. Remaining oil behind pipe is then estimated using a trained neural network and potential reperforation opportunities are presented with a quantified recoverable oil volume and associated uncertainty. Each opportunity identification process that is being mapped allows for the work to be performed much faster and at a vastly different scale. Every process implemented saves time from engineers and geoscientists. Additionally, large work efforts that used to be split amongst different individuals in a team can now be processed through a single algorithm ensuring consistency and repeatability and reducing the risk of individual bias in the assessment.
Although each individual process is beneficial by itself, the transformative value gain comes from compounding a variety of processes together, so that a number of different opportunities can be compared and ranked against each other. The study presented by Brown et al. (2007) was performed on an 85-year-old field containing 800 wells and 5 stacked reservoirs. Out of that, 36 behind-pipe opportunities were identified and estimated to be above the economic hurdle of the operator. These were compared with other types of reservoir management opportunities such as new drill locations, waterflood optimization and expansion, or artificial lift changes. 
Data analytics offer numerous methods to tackle opportunity identification problems. Mohaghegh (2016) uses the Top-Down Modeling terminology to describe a data-driven reservoir modeling approach that relies on machine learning and data mining techniques to identify new reservoir development opportunities. Kalantari-Dahaghi and Mohaghegh (2009) are for example using fuzzy pattern recognition to identify optimal infill well locations in the New Albany shale. The methodology has been applied on many conventional and unconventional fields worldwide and has demonstrated that data analytics can be applied to quickly identify complex reservoir management opportunities in mature assets. A similar approach was also used by Sharma et al. (2017) to identify well intervention candidates in the Coalinga field located in the San Joaquin Valley in California. The authors combined Voronoi grids and fuzzy logic to create an algorithm able to quantify the potential of well interventions in the mature heavy-oil reservoirs. The algorithm was applied to 1700 wells and the predictions were successfully blind-tested for validation against recent well interventions (Fig. 5.12). The study was then used to identify and prioritize future opportunities that were successfully implemented in the field.
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[bookmark: _Ref18754257]Fig. 5.12–Predicted (solid lines) vs. blind tested (dots) well interventions (Sharma et al. 2017)
Real-Time Optimization
Data analytics have played an important role in a decades-long effort toward automating reservoir management and control to strive toward real-time optimization of producing oil and gas fields. The general framework used is presented next, followed by the concept of integrated asset modeling, which is one of the core components of digital oilfield efforts.
General Framework
The term real-time optimization is used to describe a process where data acquisition, decision-making and implementation actions are performed at the same frequency. In Reservoir Management, real-time optimization usually aims at finding the optimal operational conditions for the integrated system: reservoir, wells and surface facilities. This is evidently an extremely challenging task due to the complexity of the infrastructure and the inherent uncertainty of the subsurface. This is further complicated by the wide range of time scales involved: blending decisions that are made for a multi-year field development with decisions made minute by minute by an automatic flow controller is a daunting task (Saputelli et al. 2000).
To tackle this challenge, the real-time optimization problem is usually decomposed into a hierarchy of levels (Sankaran et al. 2011), each level being associated with a different time scale. The optimization is then performed at each level with an appropriate frequency.
The feedback scheme encompasses a broad class of optimization and control paradigms, ranging from optimization for field development and production planning and scheduling, to second-by-second feedback control of flow rate through valve adjustment. For example, decision making at the upper levels may involve various optimization paradigms concentrating on explicitly stated economic objectives, whereas decision making at the lower levels may be automated and focus on engineering objectives, such as via standard proportional-integral-derivative (PID) controllers.
Integrated Asset Modeling
Integrated asset modeling (IAM) is a mathematical representation of the production and injection system used to compute multiphase flow rates, pressure, and temperature throughout the field. IAM integrates different models representing the reservoirs, wells, pipelines, as well as gathering, processing, and export facilities. This contrasts with the traditionally siloed modeling which assumes that each individual model has fixed boundary conditions. For example, a reservoir simulation model might assume a constant bottom-hole pressure constraint for its wells. IAM will instead pass information between a reservoir and a wellbore model at each time step so that the output of one component becomes the input for the next one, forming a fully coupled system. 
Surface network simulation technology was introduced by Startzman et al. (1977) and has gained traction in the last decades to improve the accuracy and precision of production forecasts. In general, the success of IAM lies in integrating existing models, so that each component can be maintained as usual by the discipline specialists. 
A key challenge for IAM has been to deliver acceptable run times and ensure stability. To tackle these issues, data-driven prediction and forecasting models, e.g. surrogates and/or proxies, have been used in the IAM context. These data analytics approaches are used to replicate the full physics at higher speeds. 
Another practical challenge for IAM is to break the barriers and promote collaboration in several operating companies, as the teams responsible for various components of the IAM often have different cycle times for updating and managing the models. The ownership of the combined entities as part of the IAM is often not well established.
Various data-driven simplifications of the subsurface response have been used in the context of IAM for driving complex asset management decision making. Decline curve analysis-based algorithm is used to rapidly determine the rig drilling schedule, more specifically to determine the investment timing for large offshore gas fields with the objective of sustaining nominated gas volumes (Aulia and Ibrahim 2018). Applications have been published in many types of fields. In coalbed methane for example, Shields et al. 2015 have successfully incorporated a predictive model in the form of pressure and time dependent type curves into a hydraulic model of the surface network to deliver an integrated production model.
Reservoir Management and the Digital Oilfield
A self-learning reservoir management strategy can be achieved by combining parametric fluid flow modeling, model predictive control, and economic (net present value) optimization for data-rich instrumented fields (Saputelli and Nikolau, 2003). Several industry case studies have demonstrated the value of digital oilfield technologies for successful reservoir management (Adeyemi et al. 2008; Sankaran et al. 2009). 
Sankaran et al. (2011) show how a digital oilfield effort was used on the Agbami field in Nigeria to deliver significant reservoir management benefits. Seven case studies are presented that highlight the impact of the digital oilfield approach taken, e.g. improved zonal-crossflow management, workover risk mitigation, and tighter conformance control. The work effort created millions of US dollars of incremental value and allowed the operating company to get closer to management by exception by automating routine tasks.

	Summary
· Data analytics can improve reservoir surveillance in two general areas – automation of routine analysis and assimilation of complex datasets.
· Common applications of data analytics in reservoir management includes identification of field development opportunities and automation of reservoir optimization.




[bookmark: _Toc23883886]Enhanced Oil Recovery (EOR) and Improved Oil Recovery (IOR)
Enhanced oil recovery (EOR) is a method used to enhance hydrocarbon recovery through modification of physical and chemical properties of the rock and/or fluid. Improved oil recovery (IOR) covers a range of methods used to enhance hydrocarbon recovery from reservoirs that are not on primary production.
Data-driven analytics are a prime technology to be applied for EOR and IOR projects and operations due to the wealth of data offered by these operations (Kronkosky et al. 2017, Popa et al. 2011). In this section, we will cover a few applications of data analytics in that space, namely, for IOR/EOR screening as well as for waterflooding and steam flooding operations.  
[bookmark: _Toc23883887]Screening Tools for EOR/IOR
Selecting the best EOR/IOR recovery method is a complex and time-consuming process involving significant amounts of data and considerable number of simulation runs. Ultimately, an economic model should be coupled to the final production performance to assess the viability of the recovery technique.
When selecting the recovery method, the fundamental parameters included in any reservoir model are the rock, fluid, and formation properties as these are unique to each reservoir. The selected recovery process that would return the highest economical outcome determines the design parameters. As the application of EOR/IOR process usually follows the primary recovery mechanism, a large amount of data and information has already been captured regarding the reservoir characterization and is available for use during screening. 
Many approaches have been taken for IOR/EOR screening, however this section will only present those that utilized intelligent data-driven analytics. The conventional methods are often driven by field analogies, pilot projects on a portion of the field or prior operational experience on similar reservoirs. This could pose challenges such as lack of objective rules to define a reservoir type, project completion time, or have bias based on expert opinions.
Expert system-based approaches to EOR screening have been proposed (Guerillot 1988; Zerafat et al. 2011), that used an inference engine with an underlying knowledge base system. Such approaches can only consider technical criteria as the economic criteria can differ amongst geographies and companies. Other dimensionality reduction techniques have also been proposed based on clustering and rule extraction algorithms (Alvarado et al. 2002) for screening EOR/IOR potential and applied to Venezuela mature fields.
More recently, a screening toolbox (Parada and Ertekin 2012) consisting of proxy models that implement a multi-layer cascade feed-forward back-propagation ANN algorithm has been proposed for a diverse range of reservoir fluids and rock properties. The field development plan is featured in this tool by different well patterns, well spacing, and well operating conditions. The screening tool predicts oil production rate, cumulative oil production, and estimated production time for different sets of inputs, which facilitates comparison of various production strategies such as waterflooding, steam injection, and miscible injection of CO2 and N2. Drilling and completion techniques, well pattern, well spacing, and the recovery mechanism were used as design parameters. The ANN tool is able to recognize the strong correlation between the displacement mechanism and the reservoir characteristics, as they effectively forecast hydrocarbon production for different reservoirs. The blind tests performed show that the ANN-based screening tool is able to predict the expected reservoir performance within a few percent of error. 
Other approaches have been reported with applications to field case studies such as Bayesian classification and feature selection (Afra et al. 2015), probabilistic principal component analysis and Bayesian clustering (Siena et al. 2015; Tarrahi et al. 2015), neural networks (Surguchev and Li 2000; Okpere and Njoku 2014; Yalgin et al. 2018) and genetic algorithms (Armacanqui et al. 2017).
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Waterflooding is the oldest and the most common improved oil recovery method used in the industry and is usually implemented following primary recovery. Waterflooding is designed to compensate for the pressure depletion in the reservoir and displace incremental hydrocarbons. Waterfloods usually involve many producers and injectors organized in different patterns depending on the reservoir characteristics.
Waterflood optimization usually aims at maximizing the oil recovery per barrel of injected water under specified reservoir and surface constrains (Sudaryanto and Yortsos 2001). Given the amount data usually available in waterflooding projects, they present an excellent playground for data-driven optimization techniques. Different methods are used for reservoir management, well placement, water shutoff, rate optimization, as well as performance forecasting to name a few (Das et al. 2009, Lerlertpakdee et al. 2014).
Data analytics methods have been successfully applied to field-wide waterflood management in numerous reservoirs around the world. Models were trained to forecast recovery and optimize the water injection and production targets. The application of data-driven techniques is of specific interest, when the reservoir is too complex to be accurately model. This often occur in complex geological settings but is also often due to the number of wells involved or extensive history of the field. Classical waterflooding optimization methods, such as basic pattern calculations or advanced reservoir simulation modeling can be impractical for such projects.
A data-driven approach (Nikravesh et al. 1996) that takes advantage of the historical data from a large waterflood field is used to construct several neural networks, which correlates the individual well performance behavior as a function of the well history itself and the injection-production conditions of the surrounding wells or pattern. The intelligent system consists of an ensemble of neural networks with different functions. Specialized neural networks accurately predict wellhead pressure as a function of injection rate, and vice versa, for all active injectors. However, the primary neural networks are trained to history-match oil and water production on a well-by-well basis and predict future production on a quarterly or biannual basis. The global optimization allows for designing the water injection policies that lead to the minimum injected water and the highest oil recovery. The distinctive element of this data-driven approach involves the division of the waterflooding field into regions of similarly behaving wells, thus accounting for different reservoir properties and heterogeneities, and captures the relationship between injection and production within each region. In addition to injection-production optimization, the system is also used for water breakthrough time prediction, as well as infill drilling performance. 
Well Placement Optimization
Another application of data analytics in waterfloods has been the optimization of well placement. Determining the optimal location of new wells is a complex problem that depends on rock and fluid properties, well and surface equipment specifications, field history and economic criteria. Various approaches have been proposed for this problem. Among those, direct optimization using the simulator as the evaluation function, although accurate, is in most cases infeasible due to the number of simulation runs required.
Data-driven approaches offer new alternatives to address these types of optimization challenges by involving machine learning techniques such as hybridization of genetic algorithms and neural networks. An example of this approach is showcased in Güyagüler et al. (2000). In the article, a methodology is presented to optimize well placement in waterfloods and the approach is used to determine the optimal location of up to four water-injection wells in the Pompano field in the Gulf of Mexico.
The hybrid algorithm involves a genetic algorithm and neural-network-based proxy function to mimic the role of the numerical simulator. A neural network was trained and validated with simulation results. An initial development plan (initial well population) is created and then run through the proxy (neural network) to provide the expected performance in the current well location. The NPV of the waterflooding project was used as the objective function to calculate the optimized injection rate design. Ultimately, it was noted that this intelligent data analytics approach for optimization of well placement and pumping rate is very general and extremely fast. It also has the potential to identify solutions that may be unnoticed by more costly conventional techniques.
Water Shutoff 
In mature waterfloods, specifically after water breakthrough, reducing the excess water production without hurting the oil production significantly improves operational costs and ultimately the final recovery. Therefore, water shutoff and conformance control, represent not only a significant financial incentive, but also an environmental motivator for the oil industry.
Several techniques have been developed to address water shutoff. Among the most efficient and popular is the injection of polymer-based gels in the formation of interest to reduce the water production and improve oil productivity. The success of such a program is highly dependent on the candidate selection quality. Ghoraishy et al. (2008) present a data-driven model able to predict the performance of future gel-treatment and select optimal candidates using historical treatment data. Two types of Bayesian networks (naïve and augmented) were trained and validated to predict the post treatment performance from pre-treatment data and the job design. A neural network approach (Saeedi et al. 2006) has also been proposed using only pre-treatment well data as input to accurately predict post-treatment cumulative oil production with better accuracy levels than anecdotal screening guidelines.
The advantage of these systems is their ability to capture hidden information in the data and develop a model, which in the absence of any other numerical or analytical solution can provide an excellent way to successfully screen and select candidates.
In waterflooding operations, with high-dimensional data consisting of many geologic and real-time operational attributes, conventional approaches such as simulation or deterministic analytical models can be cumbersome, time consuming, and not necessarily practical for tactical decision making. A data-driven modeling approach provides a practical alternative for quantitative ranking of different operating areas and assessment of production performance, development strategies, and optimization in heterogeneous reservoirs. 
Real-time data from injector and producer wells, collected at the wellhead, pump-off-controllers and fiber optics are also used to understand vertical and aerial conformance, to optimize injection profiles and rates at pattern levels (Maqui et al. 2017; Temizel et al. 2018). Pulse injection can also be used to understand inter-well connectivity as an alternative to the well-established CRM model when the latter cannot be applied due to lack of resources.
An intelligent production modeling workflow (Mohaghegh et al. 2014) using historical production and injection data and operational constraints has been used for maximizing production output from a field in the middle-east. The approach involves establishing the inter-well connectivity using Voronoi mapping and models the expected production output and oil-water ratio by relaxing the choke opening. A neural network model is trained on field data and enables decision making on choke settings to maximize field production while minimizing the water output.
Capacitance Resistance Model (CRM)
The capacitance-resistance model (CRM), described earlier in this report, is a powerful yet simple semi-analytical modeling approach for quick and robust evaluation of waterflooding performance. At its core, it is a generalized non-linear multi-variate regression technique that has its roots in classical signal processing. A change in rate at an injector creates a signal, which can be felt by one or more nearby producers (Sayarpour et al. 2007). In contrast to numerical simulators, which require a significant amount of geologic and operational data, CRM uses only production and injection data to history match and ultimately predict performance.
The data-driven component of the approach consists of exploiting the historical injection and production data to determine the model parameters that reflect the connectivity between the wells. Multiple solutions were developed and applied for practical purposes, however the three most practical for reservoir control volumes are: volume of the entire field, drainage volume of each producer, and drainage volume between each injector/producer pair (Sayarpour 2008). In these formulations, CRM can be applied for different scenarios such as full field analysis, single well, or group of wells. The capabilities of CRM models have been validated with both synthetic and real case studies. When calibrated with historical data, the model-generated solutions are comparable with those obtained from complex 3D numerical simulators. In the case of the real field study, CRM was able to quickly history match field performance and it was used for prediction and optimization, thus leading to water reallocation and an 8% increase in production.
CRM has also been used to establish inter-well connectivity from production and injection rate variations (Yousef et al. 2006). The methodology was applied for validation in two fields – onshore Argentina and Magnus field in North Sea. The approach indicated different flow characteristics that seem to agree with the presence of known geological features.
CRM has also been expanded to integrate with decline-curve analysis (DCA) to improve the understanding of the behavior of a mature naturally fractured carbonate reservoir under gas injection (Salazar et al. 2012). This approach addresses the shortcoming of applying the CRM model alone in the case of primary depletion followed by a weak injection. Therefore, the integration of the two allows the DCA to capture the contribution of the primary depletion, while the CRM seizes the injection component of the field performance. The advantage of this approach is that it is data-driven, relying entirely on the production injection history. The capability of this DCA-CRM model was demonstrated on a deep carbonate natural fractured reservoir under hydrocarbon gas and nitrogen injection, and demonstrated high reliability for short term production predictions, while allowing fast workflows and interpretations.
Improvements of the classical capacitor resistance model have been proposed (Holanda et al. 2015), using a linear system of state-space (SS) equations to define the relationships between inputs, outputs, and states that describe the dynamics of the system. As such, the SS-CRM is a multi-input/multi-output matrix representation that provides more insights into reservoir behavior than analyzing only well-by-well performance. The authors introduce three CRM representations and contrast their performance—namely, integrated (ICRM), producer based (CRMP), and injector-producer based (CRMIP). The work demonstrated that the highest accuracy and performance was observed in the CRMIP, which was able to better capture the heterogeneous areas and channel-like deposits.
CRM models are also used as a predictive model for waterflood performance diagnostics and optimization (Kansao et al. 2017). In this work, the CRM model was generated to first develop a forecast by matching historic production and injection data, followed by uncertainty analysis and optimization of a heterogeneous reservoir undergoing a large waterflood development. The study demonstrated how the CRM was used to identify water injection changes that led to increased oil production, while maintaining or reducing the water cut.
CRM has also been compared with streamline-based methods that provide an effective means to assess flow patterns and well allocation factors (Ballin et al. 2012). The study concluded that neither method was sufficient by itself, and the best strategy was to integrate them both. The estimates of allocation factors from CRM were influenced by data quality and quantity over the fit interval, while the streamline-based method had intrinsic model uncertainty.
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Steam flooding, known as thermal enhanced oil recovery, is the process in which heat is injected in a hydrocarbon reservoir for reducing the viscosity of the fluids and therefore increasing the ultimate recovery. This practice is generally applied in heavy and extra heavy oil reservoirs, which cannot be produced through an open mine.
Like the waterflooding process, the development of a heavy oil reservoir can be designed in different ways depending on the properties of the reservoir, fluids, and overall economics of the project. There are three types of development currently employed:
· Continuous steam injection in dedicated vertical injectors know as conventional steam flooding
· Huff and puff or cyclic steaming operations, where wells act as both injectors and producers in cycles
· Continuous steam injection in dedicated horizontal steam injectors drilled in pairs with dedicated horizontal producers placed just below them.  This method is known as steam assisted gravity drainage (SAGD).
Steam Flooding
Steam flooding operations present another fertile ground for data-driven analytics. While somewhat like waterflooding, given the continuous injection of agents (steam versus water) through dedicated wells, it is significantly different from the standpoint of the recovery mechanism. Rather than displacing the oil, the steam tends to rise to the top of the reservoir forming a steam chest and allowing the oil to melt and drain into the producing wells. The production prediction of such steam flood developments is challenging for both analytical calculations or numerical simulators. Most of the development projects are therefore forecasted using past analog developments. In large heavy oil fields with multiple formations, data-driven models such as neural networks can be trained based on past performance to predict the expected production outcome of a new development. These models not only can augment the analog P10 -P50- P90 models and numerical reservoir simulations, but also serve as proxies for sensitivity analysis and grounding. Such models have been developed and successfully used in several fields in San Joaquin Valley in California.
An additional application of data-driven models applies to steam injection redistribution to optimize injection and maximize reservoir performance. It is well understood and accepted that due to the inherited heterogeneities of the reservoir and the nature of the operation conditions (steam volumes, distribution, and qualities), the steam chest development is not uniform. Therefore, multi-objective optimization algorithms and cloud computing can be used to run hundreds of thousands of scenarios to optimize the steam redistribution and maximize production (Ma et al. 2015; Sarma et al. 2017a, 2017b).
Cyclic Steam Operations
The nature of cyclic steam stimulations, or huff and puff, presents a wealth of historical information in terms of steam injection volumes, rates, and pressure and corresponding production response. The use of cyclic steam operations dates to the early 1960s in the heavy oil reservoirs of California. Numerous authors proposed different analytical models. Additionally, numerical simulators were introduced to better understand the production response and improve ultimate recovery. Regardless of the approach, both analytical and numerical models need to be calibrated using history matching, which presents a challenge given the dynamic nature of the cyclic process.  
Data-driven technologies offer another approach to cyclic steam modeling and optimization, including candidate selection and steam volume optimization. A novel approach called data physics (Zhao and Sarma 2018) presents a framework to quantitatively optimize performance from a reservoir. The methodology integrates fuzzy logic, neural networks, and other machine learning techniques with the physics of reservoir simulation, therefore respecting mass balance, thermodynamics, and Darcy’s law. A modified ensemble Kalman filter was employed for data assimilation from thousands of wells and different data sources. Statistical techniques were used to demonstrate the predictive capability of the calibrated models, whereby the predicted performance of the steam jobs was compared to actual production observed in the field. The application of the workflow to a heavy oil field in the San Joaquin Valley demonstrated that the approach delivered an improved well selection for cyclic steam and an optimized injected steam volume. An incremental production response of 44% was achieved, yielding a 77% profitability increase (Sarma et al. 2017a).
A different, yet related data-driven approach was used to mine the cyclic steam performance of the Cat Canyon Field. Historical steam injection volumes, rates, quality, injection duration, and corresponding production response were collected from more than 600 wells operated in the field. A data mining approach was employed to discover patterns of injection/production performance. Using patterns information, a neural network was trained to predict the expected production outcome from the wells, thus delivering a ranking of the best candidates to be placed on steam on any given day. A better well ranking and selection was achieved, which was additionally combined with an optimized implementation schedule, which delivered significant incremental value to the field.
Steam Assisted Gravity Drainage (SAGD)
The steam assisted gravity drainage (SAGD) process consists of using a pair of horizontal wells, with continuous steam injection being placed in a dedicated injector well and collecting the gross production, oil and water, in the producer well placed just below the injector. Data-driven modeling has also been applied for recovery performance prediction in a SAGD application (Amirian et al. 2014, Dzurman et al. 2013). The objective of this work was to shortcut the detailed and time-consuming solutions provided by numerical simulators and replace them with a data-driven proxy model able to quickly screen different areas of the reservoir, assess the uncertainty due to heterogeneity, and provide a quantitative ranking for the best development. Thus, an ANN was trained based on a training data set generated by running a numerical flow simulator in various scenarios. The scenarios were run considering a wide range of values for the attributes describing the characteristics associated with the reservoir heterogeneities and relevant injection production design. While, theoretical in nature, the approach is interesting and can be easily adopted by companies, who operate many SAGD pairs across larger field areas.
The advancement in technology for surveillance, such as fiber optics, brought a completely new and exciting opportunity of data-driven applications for SAGD operations. The distributed acoustic sensing (DAS) generates millions of data points for attributes such as temperature and pressure along the horizontal wells at frequencies as high as a couple of seconds. This information, when mined properly can provide a superior understanding of the steam distribution along the horizontal, the extent of the steam chambers, and ultimately production performance. Algorithms, such as deep learning, can process these streams of data and assist not only in well work overs to optimize steam distribution and heating, but also for early reservoir diagnostics.

	Summary
· Data analytics has been used in the context of analogue selection to provide more robust predictions of the expected reservoir performance.
· Various data analytics have been developed to optimize various aspects of mature waterfloods such as new well targets, water shut-off or continuous optimization target rates for production and injection wells.
· Steam flooding has also benefited from analytics where neural networks have been trained on historical data to help forecast the performance of new projects. Another approach consists of training neural networks based on simulation results to provide a fast and accurate prediction engine for steamflood optimization. 



[bookmark: _Toc529450052][bookmark: _Toc23883890]Reservoir Simulation
Reservoir simulation is one of the most popular methods for making predictions of reservoir performance under different development and operation strategies. The results of performance prediction serve the base for many capital-intensive investment or reservoir management decisions. Reservoir simulation is often computationally intensive due to the large number of cells required to represent the whole reservoir and/or complex physics such as multiple phase, multiple component and coupling with surface network or geo-mechanics. It is common that a full reservoir simulation run takes many hours to days even with most advanced parallel solution using multiple cores in a high-performance computing (HPC) environment.
On the other hand, the inputs of reservoir simulation including reservoir static and dynamic properties are mostly uncertain due to limited sampling or error in the measurement. This results in the uncertainty in performance predictions. It has been well recognized that important reservoir management decisions need to account for these uncertainties to better manage the risk. Quantifying uncertainties in performance prediction often requires performing a large number (hundreds to thousands) of simulations, which adds additional burden on reservoir simulation. Similarly, model calibration (history matching) and reservoir development optimization also often require many simulation runs by using different combinations of model parameter values and development/well operation strategies.  
Data analytics has been widely used to reduce such burdens in reducing the computation time and costs. The two main areas that are widely used or researched on are proxy modeling and reduced-order modeling. 
This section discusses the data analytics methods applied to model generated data including proxy modeling, reduced-order modeling, and ensemble variance analysis, followed by introducing the latest attempts in the development of data-driven physics-constrained predictive modeling.
[bookmark: _Toc529450053][bookmark: _Toc23883891]Proxy Modeling
Proxy modeling (or response surface method) explores the relationships between several explanatory variables and one or more response variables. This section discusses the various proxy modeling methods and best practices in practical applications.
Proxy Model Types
Proxy models are designed to approximate the response of a system by a simple mathematical function of its input parameters without running the computationally intensive simulations. The advantages of having a proxy to approximate a simulation include: using a proxy to instantly predict the model behavior at unsampled locations, and using a proxy to quantify the impact of a change in input parameters on the output. Proxies work best when the system response is smooth.  They should be tested for validity using cross-validation.
Proxies are usually built based on a small number of actual simulation runs (samples). A popular method to select the samples is experimental design (ED) or design of experiments (DoE) where the minimum number of simulation runs are selected to obtain maximum information based on the uncertainty space (Montgomery 2012). For more details about EDs or DoEs in petroleum engineering applications, readers can refer to Friedmann et al. (2003) or Yeten et al. (2005). 
Several types of proxies are used in practice. Some are based on simple analytical functions, others use numerical approximation that cannot necessarily be represented explicitly by a simple function. 
An analytical proxy approximates the relationship between input factors and output response by an analytical function, such as a polynomial. The proxy is constructed by fitting the function to the data points using regression techniques, (i.e., least squares). It determines the coefficients of the analytical function by minimizing the sum of the squares of the errors between the data points and the fitted function values. Each data point represents a simulation run selected from the design matrix. If the number of data points equals the number of unknown coefficients of the analytical function, the proxy will traverse all the data points. If this is the case, the proxy is data-exact. However, since the proxy is only an approximation, more data points than the number of coefficients should be used to reduce error. In other words, least squares method should be applied to solve over determined problems. Hence, analytical proxies are often not data-exact.
A numerical proxy approximates the relationship between input factors and output response by attempting to connect all the data points using a surface that is generated from a numerical algorithm and cannot be represented by an analytical function. Such a proxy is called data-exact if it traverses all the data points. Three commonly used numerical proxies are: Kriging, splines, and neural networks.
Kriging predicts the value of a function at a sampling point by calculating the weighted average of the function values of the data points. Kriging assumes that all the points are spatially correlated with each other. The correlation is described by a variogram model, (ℎ), which is a function of the Euclidean distance (ℎ) between two points. The larger the distance, the more variant the two points are. The weights for computing the weighted average is obtained from the covariance between the sampling point and each data point and between all the data point themselves. A larger weight is assigned to a data point if it is closer to the sampling point. The weights are computed such that the squared error of the estimated function value of the sampling point is the smallest. Kriging is data-exact. More details can be found in any geostatistics textbook, such as Journel and Huijbregts (1978) or Deutsch and Journel (1992). 
A spline function is defined by piece wise polynomials and has a high level of smoothness at the knots where polynomials connect. Each knot refers to a data point whose function value is known. More details on spline-based proxies can be found in Li and Friedmann (2005).
ANNs are machine learning methods that mimic the operations of the cortical systems of animals. An ANN model consists of many interconnected nodes, like the neurons inside a brain. Each node accepts inputs from other nodes and generates outputs based on the inputs it receives and/or the information stored internally. These nodes are grouped in multiple layers: an input and an output layer, and one or more hidden layers in the middle. The input layer is analogous to a sense organ such as eye, ear, and nose, which receives inputs from outside. The hidden layers process the inputs to produce the corresponding response that is then reported by the output layer. Just like a human being, an ANN needs to be trained to produce proper output response based on given inputs. The training is done using the data points where the relationship between input factors and output responses are known. ANNs are often not data-exact. More theoretical and algorithmic details can be found in Reed and Marks (1999).
Other popular machine learning methods include random forest, support vector machine, or gradient boost methods. Details of these machine learning algorithms can be found in Mishra and Datta-Gupta (2017).
Best Practices for Proxy Modeling 
Extrapolation
In theory, proxies only used for interpolation and extrapolation should be avoided. It is however possible to extrapolate without realizing it, especially in high-dimensional problems where a good coverage of the search space requires many experiments. As an example, in Fig. 5.13 a linear proxy was generated from the three points marked by black dots. The proxy is used in interpolation over the green area but in extrapolation over the red area. This is sometimes hard to detect, because from a univariate standpoint, the points located in the red area appear to be within the range of data used to define the proxy. Detecting these effects in a high-dimensional problem is a challenge. These extrapolations are often performed during Monte-Carlo sampling and should be performed with caution.
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[bookmark: _Ref13777004]Fig. 5.13—Linear proxy model.

Cross-Validation
One of the most important practices when building proxies is to implement a verification process using blind tests. Blind tests are sample points where a simulation model is run, but the response is not used in the creation of the proxy. Instead the proxy is used to estimate the response at the sample location and compared to the calculated value. Blind tests are critical to validate a proxy but are sometimes deceiving, as a successful blind test only guarantees a robust proxy in a local part of the domain. Some common methods for cross-validation are:
· Exclusion of some experiments during the calibration of the training, so that the experiments can later be used as blind test. Such practice should be used with designs that offer some redundancy as it might deteriorate the sampling. 
· Addition of some experiments that can be chosen using experimental design or Monte-Carlo sampling. 
· Leave-one-out cross-validation, where every run is used as a test point for the others. For each run performed, a proxy is built using the other runs of the design. The proxy is then used to estimate the response, which is compared to the actual response from the run. The algorithm loops through the runs, so that all runs are used alternatively as test and calibration points. This method has been extended to consider more than one experiment at a time, which is known as k-fold cross-validation.
Fig. 5.14 represents a graphical example of a cross-validation. The experimental design points are shown in black and the validation points shown in red. 
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[bookmark: _Ref13777030]Fig. 5.14—Cross validation.
Over-Fitting
It is important to match the level of complexity of a proxy to the number of experiments used. Using a simplistic proxy fails to properly represent the model response but using a proxy that is too complex can lead to over-fitting and can generate inaccurate behavior. When multiple proxy models are built, the simpler models passing the validation tests should be preferred.
Minimize the Dimensionality
The number of experiments needed for a proxy grows exponentially with the dimensionality of the parameter space. It is best to keep the parameter spaces as small as possible to build robust proxies and keep the number of experiments required to a minimum. 
Use Multiple Proxies at the Same Time
It has been recommended to build several proxies together (Schuetter et al. 2015). Combining proxies built with neural networks, Kriging and splines can provide more robust estimations than any single proxy.
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[bookmark: _Ref16434388]Fig. 5.15 PDF and CDF for primary depletion of channelized reservoirs undergoing bottom drive (Friedmann et al. 2003)
Applications of proxy can be widely found in reservoir engineering for uncertainty quantification, history matching, and optimizations (Friedmann et al. 2003; Landa and Güyagüler 2003; Bhark and Dehghani 2014; Yelten et al. 2005; Amudo et al. 2014; Sarma et al. 2015; He et al. 2015, 2016; Chen et al. 2017; Wantawin et al. 2017; Pankaj et al. 2018). 
Friedmann et al (2003) applied the response surface methodology for evaluation of channelized sandstone reservoirs under input uncertainty. The method proposes a 2 steps process, starting with Plackett-Burman analysis to determine significant parameters and response curvature, followed by D-optimal analysis to identify quadratic non-linearities and interactions. The polynomial models generated using experimental design methodology (Fig. 5.15) serve as good analogs to reservoir simulators to evaluate production forecasts’ uncertainty. 
Iterative Response Surface 
The common process of proxy building based on a set of sampling may not be sufficient to build reliable and accurate proxies, particularly when the problem is non-linear. One way to improve this is through an iterative process where the new sampling points are iteratively added to update proxies. Some optimization algorithm is used to optimize the locations of most informative points between iterations (Castellini et al. 2010; Wantawin et al. 2017). 
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[bookmark: _Ref13777085]Fig. 5.16—Iterative proxy generation; First three iterations (rows) showing the sample locations (red for current and blue for next sample locations) and proxy shape (right)
To initialize the algorithm, any appropriate experimental design can be used as the initial sampling points, such as Plackett-Burman, D-optimal, Latin Hypercube, and Hamersley sequence. After the initial proxy is built, the following proxy properties can be considered when selecting the new sampling points: function value, scalar gradient, bending energy, curvature, and distance from existing points. A combined score can be computed for each proposed new sampling and the best samplings can be selected. The procedure stops when the number of iterations requested by the user is complete or when the changes to the response surface are below a certain threshold. 
For example, Fig. 5.16 shows three iterations of the proxy building process. A spline-based proxy is initially built using 9 samples (shown as the red points in the top row). Based on the initial proxy, an additional 10 samples (blue points) are selected based on multiple selection criteria. New simulations are performed, and the proxy is updated with the new samples. This process is repeated until a stable proxy is constructed or a maximum number of iteration is reached.
Probabilistic Collocation Method (PCM)
Proxies built using design of experiments do not account for the distributions of the parameters. The probabilistic collocation method (PCM) defines optimal sampling points based on the probability distribution function of the parameters using polynomial chaos expansion (PCE). The proxy is then built using the PCE terms derived from the distribution functions with the coefficients being estimated through regression with the samples (Gautschi 1994; Tatang et al. 1997; Xiu and Karniadakis 2002; Li and Zhang 2007, 2009; Sarma and Xie 2011). 
The PCM is a technique that uses the probability density functions (PDFs) of the input factors to guide experimental design and proxy construction in one step. Its greatest advantage is that a reasonably accurate proxy can be built in much fewer runs than what is required for a traditional modeling design.
PCM can be considered as an advanced experimental design (ED) technique with proxy construction embedded in it. By taking the input-factor PDFs into account, the final proxy is more accurate in high-probability regions than the traditional experimental designs. Studies have shown that the resulting proxies are more accurate and stable compared to those built by ED sampling, particularly when the problem is non-linear (Li and Friedmann 2005, Li. et al. 2011).
Another advanced method is non-intrusive spectral projection (NISP) that can be used for further improvement of proxy modeling (Le Maitre et al. 2001; Reagan et al. 2004; Sarma and Xie 2011)
[bookmark: _Toc529450054][bookmark: _Toc23883892]Reduced-Order Modeling
Like the proxy model described in the previous session, reduced-order modeling can be considered as other surrogate models can be employed in place of the traditional reservoir simulator for computationally intensive applications such as production optimization and history matching. Reduced-order models apply fast but approximate numerical solutions that are consistent with the underlying governing equations, which is the main difference from the proxy modeling described in the previous session. 
Reduced-order modeling procedures, which have been applied in many application areas including reservoir simulation, represent a promising means for constructing efficient surrogate models. Many of these techniques entail the projection of the full-order (high-fidelity) numerical description into a low-dimensional subspace, which reduces the number of unknowns that must be computed at each time step. We can classify existing approaches applied within the context of reservoir simulation as grid-based methods, system-based methods, and snapshot-based methods (He 2013). 
In grid-based methods, constructing a coarser grid and then computing properties for this grid reduce the dimension of the problem. The original problem is then solved on the coarser grid. Examples are up scaling and multi-scale methods. System-based methods are derived from system control theory. By introducing a basis matrix and a constraint reduction matrix, both are generated from the full dimensional system, a full dimensional state matrix can be reduced to a much lower dimensional linear time invariant (LTI) system, which can be solved much more efficiently (Bond and Daniel 2008).
We will focus on the description on snapshot-based methods that are more commonly used in the reservoir simulation community. Unlike system-based methods, which derive the basis and reduction matrices from the system matrices, snapshot-based methods derive the basis matrices from snapshots, which are the states at each time step of training simulations. Most methods in this category are based on proper orthogonal decomposition (POD) or its variants.
Proper Orthogonal Decomposition (POD)
Proper orthogonal decomposition (POD) reduces the dimension of the problem by projecting the high-dimensional states (e.g., pressure and saturation at each grid block in an oil-water problem) into an optimal lower-dimensional subspace. The basis of this subspace is obtained by performing singular value decomposition (SVD—e.g. Golub and Van Loan 1996) of a matrix containing, as its columns, the solution states (snapshots) computed from the previous simulations. The simulations used to provide these snapshots are the training runs; new (prediction) runs are referred to as test cases. 
Van Doren et al. (2006) applied POD to reduce the dimensions of both the forward model and the adjoint model with the goal of accelerating the optimization of a waterflood process. A 35% reduction in computing time was reported in that work. Cardoso et al. (2009) proposed a snapshot clustering procedure and a missing point estimation technique to further accelerate a POD-based reduced-order reservoir simulation model. They achieved speedups of about a factor of 6 to 10. The speedups achieved in these studies are quite modest because the POD-based methods required the construction and projection of the full Jacobian matrix at each iteration of the simulation. The computational complexity of these operations is on the order of that of the original problem, which limits the amount of speedup that can be achieved. Alternate treatments of non-linearity are needed to achieve larger speedups. In addition, unlike system-based methods that calculate both basis and reduced matrices, POD only provides the basis matrix, which reduces the dimension of the states. The appropriate constraint reduction matrix, which reduces the number of equations, still must be determined. This led to the development of trajectory piecewise linearization (TPWL).
Trajectory Piecewise Linearization (TPWL) 
The trajectory piecewise linearization (TPWL) is introduced for efficient treatment of non-linearities and thus for achieving larger speedups. With this approach the solution at each time step of the test simulation is represented in terms of a linearization around the closest saved state computed during the training simulation. TPWL was first introduced by Rewienski and White (2003). It was combined with a Krylov subspace order reduction approach and applied for circuit design problems. Cardoso and Durlofsky (2010) first considered the use of TPWL for oil-water reservoir simulation problems. They used POD for order reduction rather than a Krylov method, which gave rise to a POD-TPWL procedure. As noted earlier, the basis from POD is constructed from the states computed during training simulations, and it generally does not require updating. In addition, the optimality of POD allows for a high degree of reduction and high speedups. The results in Cardoso and Durlofsky (2010) showed reasonable solution accuracy and substantial speedups, on the order of a factor of 500, for a variety of test cases. The use of TPWL for optimization of well controls (time-varying bottom hole pressures) was also presented. In subsequent work by He et al. (2013) and He (2010), the accuracy and stability of the POD-TPWL method were further enhanced. In that work, local resolution and basis optimization procedures were introduced, and the resulting POD-TPWL procedure was successfully applied to oil-water models that contained over 100,000 grid blocks. POD-TPWL approaches have also been developed for idealized thermal models (Rewienski and White 2003; Rousset et al. 2014). These methods have not, however, been applied for compositional problems.
When dimension reduction is applied using projection matrix, the number of state variables in the system is reduced. This results in an over determined system with more equations than unknown variables. This over determined system is rendered solvable by pre-multiplying the system by the constraint reduction matrix that defines the subspace in which the residual of the system is driven to zero.
In summary, POD-TPWL combines TPWL and POD to provide highly efficient surrogate models (Fig. 5.17). The POD-TPWL method expresses new solutions in terms of linearizations around states generated (and saved) during previously simulated training runs. High dimensional states (e.g., pressure and saturation in every grid block in an oil-water problem) are projected optimally into a low-dimensional subspace using POD (He and Durlofsky 2010; He et al.2011; He et al. 2013).
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[bookmark: _Ref17659649]Fig. 5.17 – Production profiles and history match for a producer water rate using high fidelity (HF) ensembles and TPWL (He et al. 2011a)

Discrete Empirical Interpolation Method (DEIM)
Though POD is frequently applied to nonlinear problems, it should be noted that this only optimally approximates linear manifold in the configuration space represented by the data. From a practical standpoint, the dimension reduction of nonlinear terms involves a complexity proportional to the number of reduced parameters. In this regard, the Discrete Empirical Interpolation Method (DEIM) provides a dimension reduction of the nonlinear terms that has a complexity proportional to the number of reduced variables (Chaturantabat and Sorensen 2009).
POD-DEIM methods combined with radial basis function (RBF) were used in a non-intrusive manner to describe the reservoir dynamics entailed by multiple combinations of inputs and controls (Klie 2013). A global/local model reduction with POD-DEIM was introduced with an auxiliary variable (velocity field) for high compression of the model (Ghasemi et al. 2015; Yang et al. 2016). A multiscale method allows POD snapshots to be inexpensively computed with a hierarchical approximation of snapshot vectors and adaptive computations on coarse grids. Further, this method was extended to develop an online adaptive POD-DEIM model reduction by incorporating new data as they become available (Yang et al. 2017). Another variant using trajectory-based DEIM (TDEIM) was used to approximate the nonlinear terms in the test simulation as a sum of nonlinear terms evaluated at the closest available training points from the high fidelity training trajectory and a perturbed term defined as the difference between the test and the training terms (Tan et al. 2017).
[bookmark: _Toc5485280][bookmark: _Toc5488588][bookmark: _Toc5489512][bookmark: _Toc5489604][bookmark: _Toc529450055][bookmark: _Toc23883893]Reduced Physics Model
Other proxy model that we will not discuss in this report is reduced-physics models that accelerate flow simulations by simplifying the physics. Streamline methods (Batycky et al. 1997; Datta-Gupta and King 2007) fall in this category. Streamline methods decouple the flow and transport equations and then solve the transport equations as a series of one-dimensional problems along each streamline. This simplification can lead to substantial speedups relative to traditional simulation for some problems. 
Streamline methods have been applied for a wide range of problems including production optimization (Samier et al. 2002; Thiele and Batycky 2003; Tanaka et al. 2017) and history matching (Milliken et al. 2001 and Wen et al. 2003). These approaches approximate many key effects, and though they have been widely used for waterflooding applications, they are not commonly applied for compositional problems. In addition, the overall speedup using streamline methods is still limited because of the need to solve the full-order of equations at some time steps.
More recently, the concept of diffusive time of flight (DTOF) has been extended to calculate the propagation for the pressure front in the reservoir for black oil (Xie et al. 2012; Zhang et al. 2016; Lino et al. 2017) and composition simulation (Lino et al. 2017). The approach consists of two decoupled steps—calculation of the DTOF using the fast marching method (FMM) and fully implicit simulation using DTOF as a spatial coordinate (Lino et al. 2017a, 2017b). The computational efficiency is achieved by reducing the 3D flow equations into 1D equations using the DTOF as spatial coordinate, leading to orders of magnitude faster computation over full 3D simulation. Computational time-savings also increases significantly with grid refinement and for high-resolution models.
[bookmark: _Toc529450056][bookmark: _Toc23883894]Predictive Uncertainty Analysis 
A more recent advance in data analytics applied to model generated data is the so-called predictive uncertainty analysis method, designed to support rapid decision making under uncertainty. Typical use-cases are:
· Design optimal pilot program or surveillance plan to maximize value of information before the actual data is collected
· Quickly update performance predictions without needing to follow the traditional model calibration process to accelerate subsequent reservoir management decisions. In this approach, a series of simulation runs are performed using some sampling strategy in the parameter and/or operating space (such as DoE/ED) and the input and response parameters are recorded in a database
The development of oil and gas reservoirs is associated with substantial risk as the subsurface condition is highly uncertain. Data acquisition programs such as surveillance and pilots are routinely conducted in the hope of minimizing subsurface uncertainties and improving decision quality. However, these programs themselves involve significant capital investment. Therefore, before any data acquisition program is implemented, it is crucial to be able to evaluate the effectiveness and quantify the value of the program so that different designs can be compared, and the best investment decision can be made. The major challenge of estimating the effectiveness of data acquisition programs is that the data are unknown at the time of the analysis.
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[bookmark: _Ref13777133]Fig. 5.18—Traditional model-driven approach (left) vs. direct forecasting approach (right) for prediction and update of prediction due to observation data. 
As surveillance data are obtained from the field, the cumulative probability distributions (CDF) of the key metrics need to be updated accordingly. This is normally accomplished by a two-step approach as shown on the left side of above Fig. 5.18. Firstly, the data is assimilated through history matching to calibrate the model parameter uncertainties to obtain their posterior distributions. Then, probabilistic forecast is performed based on the posterior distributions of the parameters to update the S-curve of the key metrics.
This two-step approach can be very time-consuming. This is because the relations between the objectives and the model parameters, as well as the relations between the data and the model parameters, are often highly non-linear. In addition, the potentially large number of model parameters makes it very hard for any history matching algorithms to accurately capture the posterior distribution of the model with small number of simulation runs. Due to these challenges, updating the CDF with new data using the traditional approach can take weeks or months.
On the other hand, many of the field development decisions are time-critical and there may not be enough time/resource to calibrate the model or to perform any simulations after data comes in. In those cases, there is a need for rapid interpretation of the incoming data and update of S-curve without going through a full-blown history matching and probabilistic forecast process.
In a recent study, the approach called direct forecast or predictive uncertainty analysis  (also called data-space inversion) (Scheidt et al. 2015; Satija and Caers 2015; Sun et al. 2017; He et al. 2015, 2017a,b, 2018) has been proposed. Fig. 5.18 shows the concept of the direct forecast method is on the right, which can be considered as data analytics or machine learning approach using model generated data. 
In direct forecast, the statistical relationship between the proposed measurement data and the business objective is established based on simulation model responses before the data acquisition. This direct relationship can then be used to rapidly update the prediction of the objective once the data becomes available. These processes are illustrated in Fig. 5.19. Data analytics algorithms can be used to address these challenges (He et al. 2018).
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[bookmark: _Ref13777178]Fig. 5.19—Concept of applying data analytics to model-generated data to find leading indicator via uncertainty reduction (before data comes in) and rapid updating of forecast (after data comes in). 
[bookmark: _Toc529450057][bookmark: _Toc23883895]Data-Driven Physics-Based Predictive Modeling
In this section, we discuss recent contributions on data-driven physics-based modeling, in which models based on simplified physics are built directly to fit the observed data. The purpose of data-driven physics-based modeling is to use a variety of simplified physics models that can explain the observed data. This is usually associated with a fast data assimilation method to quickly account for observation data by adjusting model parameters, such as ensemble-based data assimilation method (Evensen 2004; Wen and Chen 2005, 2007; Aanonsen et al. 2009; Emerick and Reynolds 2013).
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[bookmark: _Ref13777206]Fig. 5.20—Traditional model-driven physics-based approach (left) and data-driven physics-based  approach (right).
Historically, engineers model and predict reservoir performance using tools that vary in complexity in terms of modeling the underlying physics. These tools range from simple decline curve analysis to full-fledged 3D compositional reservoir simulation. For a reservoir engineering problem at hand, engineers must select appropriate tools according to both the nature of the problem and the practical logistics of the project. Quite often the best tool to apply is not the most advanced or sophisticated tool at hand. 
In traditional model-driven approach (left figure in Fig. 5.20), reservoir static models are often constructed by integrating a variety of data sources from geophysics, petrophysics, and geology. These full 3D static reservoir models are usually complex and do not include dynamic data such as those observed from wells (e.g., rate and pressure data). Reservoir performance is then performed via flow simulation based on the static model by assigning different development strategies to obtain the production profile that will be used for evaluating the economics. When there are observed data from production, these models will require calibration to confirm the observation data via a tedious history matching process. The updated performance prediction is then obtained by running flow simulation of history-matched models.
Big data and advanced data analytics have opened another window for predictive modeling of reservoir performance using purely data-driven methods without modeling the underlying physics. These purely data-driven methods have been discussed in other sections (Section 3 and Section 5.6.1) of this report. In this section, we focus on the approaches to combine conventional physics-based reservoir engineering models with big-data and data-driven technologies (right figure in Fig. 5.20). In this approach, an ensemble of models (simple but sufficient to account for important physics) are constructed based on the available data and known physics. Forecast is obtained directly after models are calibrated to the observed data via simple and fast classification or data assimilation method. The predictive power of purely data-driven methods is often questionable outside the space covered by actual data. It is hopeful that with these physics constrained hybrid approach, we can simultaneously obtain the high performance of the data-driven methods as well as better predictability of physics-based models outside the data range. 
In the following sections, we describe several emerging technologies that aim to achieve this goal.
Diffusive Diagnostic Function (DDF)
Recently, Zhang et al. (2018) developed a physics-based data-driven model for history matching, prediction, and characterization of unconventional reservoirs. It uses 1D numerical simulation to approximate 3D problems. The 1D simulation is formulated in a dimensionless space by introducing a new diffusive diagnostic function (DDF). The DDF is physically related to the reservoir properties as well as hydraulic fracture geometries.
As illustrated in Fig. 5.21, the idea is to discretize the reservoir according to a set of contour surfaces of the unknown 3D solution. As a result, the reservoir is conceptually modeled as 1D. The key point here is that, for a given reservoir, we do not need to derive the 1D model by building a detailed 3D model. Instead, we just need to find possible 1D models that will reproduce the observed production history. Each possible 1D model is fully described by a DDF. The DDF has certain characteristics that are closely related to reservoir and completion parameters such as total fracture area and stimulated reservoir volume (SRV). This allows initial estimation of DDFs from prior knowledge of the reservoir and hydraulic fractures. It also allows post history-matching diagnostics of these physical parameters. Because the forward simulation using the 1D model is extremely fast, thousands of realizations can be generated to achieve history matching in minutes. Compared with conventional reduced physics methods such as decline curve analysis and rate transient analysis, the DDF approach can easily incorporate complex flow physics such as multi-phase and compositional fluid model without assuming any specific flow regime.
 [image: ]
[bookmark: _Ref13777237]Fig. 5.21—Schematic diagram to show how a 3D reservoir simulation problem could be reduced to 1D.
Other Approaches 
Other similar approaches include CRM (Capacitance-Resistance Models, refer to Session 5.3.2.3) and INSIM-FT (Guo et al. 2017, 2018 and Zhao et al. 2015, 2016a,b), StellNet (Lutidze and Younis 2018, Ren et al., 2019), and data-physics model (Sarma et al. 2017 and Zhao and Sarma 2018). All these approaches try to simplify the reservoir model to connections between wells with different type of parameterization. Reservoir simulation or semi-analytical method can be used to account for flow physics for inter-well modeling with relatively a small number of parameters, which results in fast turnaround. They all require significant historic data and rapid data assimilation method or machine learning techniques to calibrate the model parameters before becoming useful tool for prediction and optimization.
INSIM-FT
The reservoir is characterized as a coarse model consisting of several inter-well control units where each unit connects a pair of wells. Each unit has two specific parameters: transmissibility and control pore volume. By solving the mass balance equations, for the control units, the inter-well fluid rates, and saturations are obtained so that phase producing rates can be predicted. A history-matched INSIM-FT model could reliably predict future production on a well-by-well basis accurately for both synthetic cases and a cross-validated field case. It has also showed that a history-matched INSIM-FT model could be used to estimate the well controls that maximize the NPV of production over any prescribed future time, generally the remaining life of the reservoir.
Other than its restriction to water flooding applications, the only apparent defect of INSIM-FT is its restriction to two-dimensional problems where all wells are completely-penetrating vertical wells. It was then extended to 3D, referred to as INSIM-FT-3D. 
The INSIM-FT-3D formulation was validated on synthetic examples, where a reservoir simulation model, and a field case represent the reservoir. For these examples, INSIM-FT-3D was able to obtain good history-matches and predictions.
StellNet
StellNet focuses on extending the idea of replacing 3D geo-cellular grid into network of connections in analogy for more complicated physical scenarios - such as horizontal and multi-lateral well operations and steam or gas flooding processes (Lutidze and Younis 2018, Ren et al, 2019). With the parallel implementation capabilities of the model and its generality to model physics StellNet can replace reservoir simulator for close-loop optimization applications.
StellNet is a hybrid finite-volume and flow-network reservoir model including production facilities. The reservoir is characterized as a serial of end nodes and connections between nodes. Here is how it works:
1. Generating a sparse, irregular lattice of nodes in 3D to capture the geometry of structures such as completed well trajectories and fractures. To generate a graph, there are two types of points: well points, which are the nodes at the perforated zone of along the well, and reservoir points, which represent the reservoir boundaries, aquifers, or other special features. A minimal undirected graph is then created, linking nodes to form a network. 
2. Coupled with a wellbore model, the sequence of connections performs as a proxy of the reservoir. Each link is treated as a coarse, one-dimensional simulation problem and solved with a finite-volume scheme. The connections can be divided into three major types: intra-well connection depicted by a wellbore model, inter-well connection characterized by porous media flow between well nodes, and well-reservoir connection which captures the influence of reservoir boundaries and/or aquifers.
Data Physics Model
Sarma et al. (2017) described a data physics model that merges modern data science and physics of reservoir simulation that allow quick set up and run in real time.  It focuses to predict the production impact of certain activities, but not trying to characterize the details of reservoirs. The underlying reservoir physics equations, same as in a reservoir simulator, are solved which allows it to account for different physics including mass balance, heat balance, and Darcy’s law. The coefficients of these equations in the model are calculated via neural network. Production data, log data, and seismic data can be integrated via a single assimilation step using a modified Ensemble Kalman filter (EnKF) (Evensen 2004; Wen and Chen 2005, 2007; Aanonsen et al. 2009; Emerick and Reynolds 2013).

	Summary
· Data analytics can be used in conjunction with numerical simulation to reduce computation time and cost.
· Proxy modeling, reduced-order modeling, reduced physics modeling and data physics modeling are some of the modern data analytic approaches with reservoir simulation.



[bookmark: _Toc23883896] Unconventionals
Conventional reservoir engineering studies have typically been conducted with a combination of methodologies, including analogues, data-driven studies, analytical models, and numerical models. In conventional reservoirs, the physical laws governing the flow and transport problems through porous media are relatively well understood and documented. The modeling approach taken for a study is thus chosen based on the data, time, and resources available.
The physics at play in unconventional reservoirs remain an area of active research. The complexity of the physical phenomena involved combined with the scale and pace of development has pushed the industry to adopt the use of data-driven models to answer reservoir management questions. Reservoir simulation and simple analytical methods remain in use, but a new type of models has recently gained popularity to answer questions related to well spacing and targeting or optimal completion design and practices. 
These new data analytics efforts usually gather data on many wells and try to determine the key factors driving economic performance (LaFollette and Holcomb 2011, 2012, Portis et al. 2013). Data-driven models are being used at different stages of the life cycle of unconventional reservoirs. First-pass models are often created to support transactional decisions during acquisition or divestiture projects to assess and rank the potential value of various basins, specific land positions, or entire companies. Some models are built early in the development of a play to support the appraisal efforts by quantifying uncertainties and methodically reduce them through data acquisition or field pilot efforts organized through experimental design. Today, most operators involved in unconventional reservoirs maintain evergreen models that help optimize their development efforts. These models help answer questions related to drilling and completion designs and practices or well targeting and spacing.
This section presents a general approach followed by practitioners when developing data-driven models for unconventional reservoirs (Courtier et al. 2016, Wicker et al. 2016, 2017. Burton et al. 2019). Published references will be provided when possible but several companies using data analytics to model unconventional reservoirs are reluctant to publish details or the impact of their work due to the proprietary nature of the data sets and to the relative novelty of the methods, which are still evolving. The remainder of this section describes sequentially the various steps usually taken to develop a data-driven model for an unconventional asset: data collection, attribute modeling, data reduction, machine learning, and model distribution.
[bookmark: _13pddkxvtye6][bookmark: _Toc23883897]Data Collection
The first step in building a data analytics model is to gather the data relevant to the effort. This typically presents a challenge for models pertaining to reservoir management and more specifically to unconventional reservoirs as these models integrate data from a variety of disciplines and operators. A best practice is to establish from the start of the project a data pipeline, which identifies the original source of each data point and keeps track of how the data is transformed through the analytics modeling process. This allows models to be updated quickly and automatically as new data becomes available. 
The data is usually pulled from different systems and integrated in a unique location for analysis. Some companies have developed dedicated analytics database (Burton et al. 2019), others load their data into third party analytics platforms, but the approach can be as simple as a shared file repository where the data pulled from different systems is aggregated.
[bookmark: _qprwjslqv816]Rock Properties
The reservoir rock properties are usually extracted from a geologic model covering the area of interest. Standard geomodeling workflows are used to define the stratigraphic and structural framework and to populate the model with petrophysical properties. Seismic surveys, petrophysical logs, and core data are integrated to estimate key rock properties such as bulk volume, rock types and facies, mineral volumes, porosity, and permeability, etc. Additional properties are often modeled that were not usually estimated in conventional reservoirs. Wicker et al. (2016) report aggregating factors such as brittleness, sweetness, curvature that would typically not be used in a conventional modeling workflow.  The natural fracture system is typically characterized, either through volume-average properties or through a discrete fracture network. Key geo-mechanical properties are estimated along with the regional stress field. A variety of other seismic attributes are also routinely proposed as potential indicators of well performance. The resulting geologic model usually presents itself as a series of two-dimensional maps or as a three-dimensional geo-cellular model or property volume (Courtier et al. 2016, Wicker et al. 2016, 2017).
Fluid Properties
Most unconventional reservoirs are source rocks that still contain the organic material that formed the hydrocarbon fluids in place. A proper characterization of the fluid system therefore should encompass both an understanding of the kerogen and its maturity as well as a determination of the phase behavior and flow properties of the gaseous and liquid hydrocarbons. These two aspects of the fluid system are typically performed sequentially.
The question of the kerogen and its maturity is usually tackled first, as part of the geologic modeling process. This is typically done by analysis of cuttings or core samples and petrophysical logs (Ahmed and Mehan 2016). The output of that work is usually a series of attributes providing insights into the hydrocarbon source system, such as the total organic carbon (TOC) and vitrinite reflectance. Additional attributes are also routinely included that might include geochemical tracers. This effort provides an estimated distribution of the hydrocarbon fluids present in the reservoir.
Further characterization of the produced fluids is then performed to establish the phase behavior and flow characteristics of the fluids. Water properties such as salinity, dissolved chemical compositions, or pH are usually determined from produced water samples and mapped. Produced oil and gas samples are frequently analyzed in terms of specific gravity, gas-oil ratios, condensate-gas ratios, and PVT experiments are conducted on a subset of the samples. Different approaches are taken for hydrocarbon fluid characterization, ranging from the calibration of an equation of state to the use published correlations. A common practice is to first map simple fluid parameters (i.e., gravity measurements, geochemistry or produced fluid ratios) to model the fluid compositions across the reservoir. The PVT samples are then used to establish correlations between these basic mapped properties and a more complete set, including the estimate evolution of these properties with respect to pressure and temperature. Black-oil type properties such as formation volume factors, solution ratios, or viscosities can thus be estimate at any location in the field (Burton et al. 2019).
Drilling and Completion Data
Information about the well design and condition are often included in the analysis. Drilling and completion design as well as operational execution parameters are aggregated on a well-by-well or stage-by-stage basis. 
On the drilling side, the well trajectory is usually processed to provide insights into the completed well length, orientation of the well in azimuth and inclination (Wicker et al. 2017) as well as tortuosity. Measurement taken during drilling operations, such as measurement while drilling (MWD) or mud log are sometimes included.
The completion data set is usually carefully compiled. When building a model from public data sources, the only information that is consistently available might be limited to the total volume of fluid and proppant injected during the fracturing process. When available, a much richer data set is included, that will include the type of fluid and proppant being used, the number of stages, the types and number of perforations. The type of completion (i.e., plug and perf, sliding sleeves or other) is also often included. Pump curves data are typically processed to yield key information describing the fracture design and the reservoir response (Temizel et al. 2015). A set of attributes is built that typically include the leak off, breakdown, propagation, instantaneous shut-in and closure pressures, the average and maximum treating rates, as well as the timing of the injection. 
Lift Design and Production Operations
Various artificial lift methods are used in unconventional plays. The methods depend on a variety of factors: depth, pressure gradient, temperature, expected water cut, and gas-oil ratio, etc. Including the artificial lift system design and its operational parameters can be very critical to help the model explain differences between wells with different lift conditions. The data can be included in several ways. When the lift systems across all wells in a study are standardized, feeding the operational parameters of the lift methods might be sufficient. When a more diverse set of lift systems exist, it might be beneficial to estimate the flowing bottom-hole pressures of each well and feed that information to the model. This allows the analytics model to better quantify the influence of changing lift conditions with a relatively restricted set of input parameters.
Pre-computing the flowing bottom hole pressures for wells has the added benefit of accounting for different flow-back strategies. In some basins, different flow-back strategies have an influence on the recovery of the wells. This can easily be accounted for by feeding the model with the flowing bottom hole pressure measurements or estimates, which will account for the choke settings, temperature, pressures, and fluid properties, etc. 
Multi-Well Effects
During the development of unconventional wells in North America, it is sometimes necessary to place an initial well in a section to hold the lease by production. Operators that have acquired a large land position often initiate a program where a single well is complete in each drilling section. This initial development is then followed by an infill development where additional wells are drilled in each section. The performance of the children wells is usually lower than that of the parent wells due to depletion effects. It is therefore important to include parameters that account for the available drainage volume of a well as well as the amount of depletion that occurred around the well prior to its completion.
Production Performance
Most data-driven models built for unconventional assets aim at forecasting future well production (Deen et al. 2013). It is therefore critical to gather the historical performance of the well in terms of oil, water, and gas production volumes. Different approaches are taken to prepare the production data set. Sometimes, the data set is compiled monthly, often in terms of cumulative production. Other times, the available production data on a given well is fit to a simplified model described by a few parameters. These parameters then form a summarized description of the well behavior, which can be fed to the analytics algorithm.
A common challenge for these models is the fact that each well has a different life span. The data set available to make a prediction therefore decreases as the forecasting timeframes increases. This can lead to a statistical phenomenon called survivor bias where only the wells with the longest histories are used for the long-term forecast. The usual way to resolve this challenge is to append a simple forecast to the existing well production to extend the data set. This appended forecast is usually provided through decline curve model or using a type curve calibrated to the early well production (Fetkovich 1973; Mohaghegh 2017; Mohaghegh et al. 2017, Burton et al. 2019). 
Economic Parameters
Most development optimization problems come down to finding the optimal return on investment for a given well location and design. Historical well costs and commodity prices are thus gathered along with assumptions on future economic parameters. This data is rarely fed directly to the analytics model; it is most often used in a separate economic model that uses the production forecasts to estimate the financial performance of the wells (Burton et al., 2019).
[bookmark: _Toc23883898]Machine Learning
A variety of machine learning models have been applied to forecast the production of unconventional wells. This includes common algorithms, training, and scenario analysis and optimization.
Common Algorithms
The simplest and one of the most frequently used machine learning model possible is a multi-variate linear regression (Courtier et al. 2016, Wicker et al. 2016, 2017. Burton et al. 2019). Although the model itself is linear, the preliminary data transformation allows for a model that is effectively non-linear. A preprocessing algorithm known as alternating conditional expectation is sometimes used to identify potential data transformation that leads to a superior fit. More advanced regression algorithms such as multi-variate adaptive regressive splines have been used successfully over the past few years.
More advanced models are routinely used as well. Neural networks have always been a go-to choice due to their versatility. For the most part, the oil industry has so far been using simple feed-forward back-propagation algorithms for these applications. These models perform well but iterations on the network architecture are sometimes necessary which makes these models less attractive than simpler algorithms.
Random forest is another frequently used algorithm for these problems, but they tend to be poor at extrapolation. Some companies have modified random forest algorithms to improve the extrapolation capabilities by accounting for expected parameter trends, but in general these models should be used carefully outside of the existing data range. Other algorithms such as support vector machines, Bayesian belief networks, boosted trees, or convolutional networks have been used as well, although less frequently.  
Scenario Analysis and Optimization
Data analytics models for unconventional reservoirs are often used by asset team members for scenario analysis. The team tests various completion designs, well spacing or targeting strategies, flow back or artificial lift approaches and assess their potential merit in terms of recovery and economic performance (Burton et al. 2019). Sometimes the optimal scenarios are identified more rigorously by coupling the analytics models to an optimization engine. Wicker et al. (2017) have reported using Monte Carlo analysis on their multivariate analysis model to better understand the individual influence of key design parameters. 
Although the use of data analytics to model unconventional reservoirs is relatively widespread amongst operators, the exact impact that these efforts has is rarely publicized. The benefits are usually categorized either in work efficiency gains or direct improvements to the development strategy. Devon was for example reported (Jacobs, 2016) to have  dramatically improved their analysis efficiency through data-driven models. It was reported that an analysis that used to take a week to be performed on 50 wells was accelerated and expanded to take under 10 minutes for the Lower 48 States. Laredo has reported that their model represented a fundamental driver for value creation within field development planning and quantified the potential effect of their work by showing that higher or lower production attributes could lead to a production range of 75% to 130% around their type curve.

	Summary
· Today, due to the scale and pace of unconventional developments, data analytics is used by most operators to help forecast and optimized new unconventionals wells and drilling units.
· Algorithms that have reportedly been used successfully include multi-variate regression and random forest.




[bookmark: _Toc23883899]Future Trends 
Oil and gas operations are becoming increasingly more complex; with infrastructures dramatically expanding and more sophisticated systems used both offshore and onshore. Environmental, safety, and regulatory pressure also continue to rise. Additionally, new workforce challenges are emerging as part of the crew change.
In response, companies are preparing for sustained low prices and competitive landscape with the success of unconventionals by embracing innovative technologies led by data analytics and adopting external trends. Several reservoir engineering advancements are being led through data-driven insights and subsurface analytics.
At the basic level, certain repetitive jobs involving data migration, data processing and event detection are being automated, freeing up reservoir engineers to do more analysis and interpretations. In this case, automation augments reservoir engineers to do more with less.
[bookmark: _Toc23883900]Data
According to a recent report by Forrester, less than 0.5% of all data collected is ever analyzed. Just a 10% increase in data accessibility will result in more than $65 million additional net income for a typical Fortune 1000 company. Oil and gas companies have started to invest heavily in digitization, data acquisition, and ownership to transform the business and realize the value proposition as seen in other industries. This heavy investment in big data and analytics is expected to continue resulting in companies aggregating huge volumes of data. This further requires focus on improving data accessibility and usability (Gantz and Reinsel 2012, McKenzie et al. 2016). 
While democratic and easy access to data will promote transparency and lead to quick insights, a single version of truth will break silos across organizations and promote accountability. Whereas, exploding data volumes will need open standard big data architecture that can seamlessly work across multiple vendor applications and operator workflows. Companies are looking into building data platforms (including subsurface data lakes) upon which multiple systems interact. This would also require standards and open interfaces for application systems to work successfully. Best practices in data profiling, data transformation, and data governance are extremely critical for sustained value creation.
There is also a shift in paradigm from moving data to calculations to moving calculations to data. This is enabled by massively parallel processing capabilities with newer hardware (CPUs and GPUs) and stream computing. The shift towards platform-as-a-service (PaaS) and software-as-a-service (SaaS) models enabling engineering and geoscience work processes will require large amounts of data to seamlessly transfer between multiple systems.
However, subsurface data is typically fraught with uncertainties, while interpretations are time-consuming and are characterized by low volumes. This is a current limitation for machine learning and AI methods as applied to reservoir engineering applications. In some cases, data labeling, and cost of subsurface data acquisition is a bottleneck for generating large training data sets for supervised learning. Therefore, there is a significant potential for hybrid models, reduced physics methods and unsupervised learning methods in reservoir engineering applications.
[bookmark: _Toc23883901]Field automation 
For intelligent fields, there is a growing need for tools that enable engineers to “see” further into the reservoir in order to adjust the flow control strategy as required. With sensors becoming cheaper, ubiquitous, and more connected, oil and gas fields are getting more instrumented. Downhole sensors in wells and flowlines are becoming more common to measure pressure, temperature, multiphase flow rates and fluid density. Novel measurement methods such as fiber optics (distributed acoustic sensing and distributed temperature sensing) have made possible measurements that offer higher spatial resolution and data frequency than traditional sensors (Smolem and van der Spek 2003).
From a reservoir management perspective, the most value can be achieved when implementing intelligent flow control systems coupled with surveillance tools. Robust surveillance strategy is fundamentally enabled by resilient data acquisition systems and active flow control systems that facilitate optimization of recovery efficiency.
Standardized end devices and segregation of automation network will provide a sound platform for the flourishment of internet of things (IoT) in the oilfield. Recent advancements in IoT devices and edge analytics will allow engineers to collect more data and run their algorithms in real time near the devices to optimize operations. Further, the intersection of cloud and mobility is creating new opportunities for engineers to collaborate and access relevant data from virtually anywhere and at any time. An increasing number of reservoir surveillance and simulation systems are exploring cloud-based mobile applications, which adds new pressure on IT to consider how to integrate these with the modern data architecture in a secure manner.
In cases where direct measurement of certain variables is not feasible, data-driven virtual measurements are filling in the gap. Digital twins are virtual or simulated models of a physical asset. The asset could be a process, product, or even a service. A digital twin is built by capturing data from diverse sources including the sensors installed on the different parts of the physical object and building a virtual model to track the physical asset state using fit-for-purpose data-driven and physical equations. While the concept of digital twin is not new, the advent of IoT and data analytics are making them a viable alternative for continuous monitoring (Poddar 2018).
[bookmark: _Toc23883902]Applications
A desirable objective in reservoir management and field optimization is to use fit-for-purpose, automated tools to transform towards data-driven advisory systems recommending decisions under uncertainty, potentially leading towards autonomous closed loop control. Improved understanding of the complex reservoir processes and enabling technology makes this shift possible from heuristics towards data-driven decisions. These trends can be seen currently in unconventional and EOR applications.
High performance computing advances have enabled creating and running larger and complex models that run faster with rapid advancements in GPUs and parallel computing. With increased availability of training data, the new hardware technology also enables faster learning. Coupled with intelligent algorithms and reduced physics modeling approaches, this can speed up reservoir modeling and forecasting. Faster turnaround times for interpretations and large-scale reservoir evaluations can help optimize field development decisions. Quicker identification of issues through automated surveillance will help improve production efficiency and recovery factors.
Current applications of machine learning methods can be mostly classified as generic algorithms applied on oil-and-gas data. However, work is ongoing to start designing custom algorithms designed specifically for oil-and-gas problems. These new algorithms should be far superior than standard out of the box methods for applications such as seismic processing, interpretation and production forecasting. 
Various approaches have been used to integrate physics into machine learning algorithm but a new generation of algorithms are now doing it very naturally. The algorithms can transition smoothly between interpolation in a data rich environment to physics-based extrapolation when needed. This approach also has the potential or replacing standard reservoir simulation solvers as the inherent architecture of the machine learning algorithm is more easily parallelizable than the standard numerical methods for partial differential equations.
ML strategies based on reinforcement learning may be adapted for reservoir engineering by including both synthetic and real data. For example, for optimum development plans or well locations, similar models may be developed in which real examples and simulation results are altogether used in the training. Our industry, therefore, should be more flexible in terms of data sharing.
Rooted in statistics, data analytics can also address uncertainty to make robust decisions. In particular, unconventional field development has the potential to be strongly driven by data analytics with large well density, fast decision cycles, and shared digital information. It is expected that more cognitive AI applications will be used to search for hidden trends across structured and unstructured field data combining time series analysis, text mining, and audio and video analytics, etc.
However, while fit-for-purpose physics-based models can often address a variety of questions (within reason, as long as the phenomena are captured by the modeled physics), data-driven models have narrow focus and solve specific problems that they have been trained for. It is not surprising to envision several focused data analytics models that solve highly focused problems in lieu of an integrated asset model. Also, there is a strong need for more research on assessing model validity of data-driven models automatically over longer periods of time. Subsurface processes are highly non-linear and time-varying, and the validity range of data-driven models often have to be refreshed through continuous training. However, it is necessary to distinguish between data uncertainty and model uncertainty for a sustainable process.
[bookmark: _Toc23883903]People
One of the severe impediments to reaping the benefits of data analytics in reservoir engineering applications is the shortage of practitioners with hybrid skill sets—combining domain expertise, computing skills, and data analytics. Companies and universities are starting to realize the need for this new breed of engineers by establishing new innovation centers.
Companies will also have to design new career development paths for these reservoir engineers so that these roles are seen as an integral part of doing business and fundamentally transforms the business. Up-skilling current employees and democratizing data is essential to alleviate the impact of any skills gap. Current employees can be trained internally or externally. There is a wealth of training programs available that can provide them with data science skills to supplement the business experience. However, often they lack industry specific examples, business context, application idiosyncrasies, and detailed know how. Larger oil and gas companies can also set up analytics centers of excellence to ensure that more traditional engineers receive some training in the use of data. Industry forums (such as SPE) can also play an important role in improving the awareness and raising the skills through training and certification programs.
Different levels of expertise may be needed to successfully inculcate the benefits of data-driven methods. Basic awareness programs will provide a foundation for managers and decision-makers. Individuals who will be responsible for analysis of data analytic products will need to be skilled in basic techniques, and understand their strengths and weaknesses to review work done by others. Practitioners tasked with developing data products will benefit from advanced training with hands-on experience.
Academic institutions are starting to cater to these new industry skills through certificate programs, specialized courses, and cross-disciplinary curriculum combining data science and scientific computing. Massive Open Online Courses (MOOC) that are offered online with practically unlimited participation have focused on data science skills that have been very popular in the recent years. A few digital petroleum engineering programs have been established in select schools in response to these new industry demands.
Gartner estimates that over 40% of data science tasks will be automated by 2020, resulting in increased productivity and broader usage of data and analytics by citizen data scientists. This will further increase the reach of new technologies across the enterprise as well as help overcome the skills gap. Automation will simplify tasks that are repetitive and manually intensive. Increasingly, oil and gas companies have renewed their interests in implementing digital operations platforms that cater to these needs. 
So, what can automation reasonably achieve in the next few years? 
· Data—Companies that value data as an asset are pursuing integration of data sources to provide clean and high quality data for data-driven methods. Automated pipelines for data engineering and data processing will limit tedious manual efforts and allow management by exception. However, this does not eliminate the need of practitioners for exploratory data analysis, assessing data needs and making sense of the data. 
· Models—Another key cognitive task related to model selection and search for architectures is also being addressed. Leading technology companies and open source initiatives in data analytics have been investing heavily in developing automated machine learning and neural architecture search frameworks. They aim to provide a suite of machine learning tools that will allow easy training of high performance deep neural networks (Hinton et al. 2012), without requiring specialized knowledge of deep learning or AI. Other major efforts are in the area of interpretability through explainable AI that can help deliver meaningful insights for decision-making purposes. Some of the biggest advances are yet to come through discovering more robust training methods.
The authors are optimistic about what the future holds for the role of data analytics in reservoir engineering and oil and gas industry, in general. Just 10 years back, only a handful of colleges in the U.S. offered Big Data or Analytics degree programs. Today, more than 100 schools have data-related undergraduate and graduate degrees, as well as certificates for working professionals or graduate students wanting to augment other degrees. The popular demand for these courses portrays a healthy pipeline of job candidates that will be realized over time. The confluence of these new hybrid engineers with modern skills sets, increasing data availability and demonstration of more successful applications of data analytics will make these methods part of routine business processes instead of optional methods.
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[bookmark: _Toc23883905]Appendix – Model Development Process
Typically, the data-driven model development process involves the following steps.
1. Define the objectives and purpose for the model
Analyze the system to be modelled to understand the scale, complexity and processes involved
Collect, validate, analyze and prepare the data set available for modeling
Define acceptable accuracy of the model
Select model and proposed modeling approach
Develop a learning model and a modeling workflow
Calibrate model against held out data
Validate model against blind data
Deploy model for intended purpose
Business Objectives
Every model is built with a sense of defined purpose or objective, which should primarily drive the modeling approach. For example, when well placement optimization is the primary objective, a material balance model may not be an appropriate modeling strategy. 
The business objectives could be classified as follows: 
Predictive – Aimed at predicting future outcomes or what would happen. For example, predict estimated ultimate recovery of a well from first few months of observed production (prediction problem); or predict if a water breakthrough would happen within the next 1 month (classification problem).
Explanative – Understanding why something happens by using plausible mechanisms to match outcome data in a well-defined manner. For example, explain why water breaks through prematurely in producer wells by injecting water in certain water injection wells.
Illustrative – Showing a mechanism or idea clearly to understand how it happens. For example, show water blocking effect is observed in flow through hydraulically fractured horizontal wells.
System Analysis
Proper understanding and delineation of the system (or the subsystems) being modeled is an essential initial step in the model scoping process. If the underlying physical mechanisms can be modeled explicitly with known model parameters in a timely manner, then it may offset the need for data-driven models. Therefore, it is important to understand the limitations or the driving factors for a data-driven model in the first place. The acceptance of a model is thus guided by its “usefulness” rather than the “truth”. Having domain knowledge or partial understanding of the physics can also be helpful in designing features that can assist or speed up the machine learning model.
Data Analysis
The next phase of the process dives into a preliminary analysis of the dataset to better understand the problem at hand.
It is important to ensure reproducibility of the entire analysis that is important for data analytics projects. Therefore, original versions of raw data must be kept separate from the tidied data set (and its versions).
Exploratory Data Analysis
After the data has been gathered for the study, an initial exploratory data analysis starts, which is typically aimed at understanding the data set as much as possible prior to modeling it. The objective of this phase is for the modeler to familiarize themselves with each variable, understand the relationships between the variables, visualize the distributions and identify potential gaps or outliers. During this phase, a series of descriptive statistics are calculated, and a series of displays are generated to visualize the content of the data. This important step is critical both for efforts in both descriptive and diagnostic analytics. Following this initial investigation, the data set is transformed in several ways prior to the application of the machine learning algorithms (Mishra and Datta-Gupta 2017).
Understanding the data available for modeling starts with defining the type of data—namely, structured or unstructured. Structured data is defined by columns and data instances with well-defined data types, whether they are numerical or categorical. Unstructured data is mostly in the form of text, image, sound, or other such formats.
Data Availability
When limited data is available or the process often takes excursions outside the historical training data range, (full or reduced) physics-based models are much more reliable for better accuracy. On the other hand, when substantial relevant data is available, and the process is conducive to data-driven modeling, they can be quite useful and often outperform physical models. The choice of machine learning models is also dependent on the amount of data available for training purposes.
The size of training and validation data sets is quite important in the choice of modeling approach and meeting desired modeling accuracy levels. For example, if two different algorithms are used that have very close accuracy levels, it may not be possible to detect the difference with small training data sets. For validation data set, a popular heuristic is to use 30% of the available data for testing purposes. In general, the availability of labeled data sets for classification applications in reservoir engineering is often limited and may be a necessity for supervised learning algorithms.
Data Types
Achieving full potential of all modeling approaches is underpinned by appropriate identification, selection, access to relevant data, and information to the study (e.g., flow transient analysis, waterflood/EOR, etc.). Data-driven, machine learning, and AI-based models for subsurface and reservoir applications operate on the following categories of data:
Time series data—Parameter values vary with time that indicate change in operating mode (through external signals) or in response to other inputs. Such data is typically an input (manipulated variable, e.g., choke position), a disturbance, (e.g., noise) or a response (controlled variable e.g., wellhead pressure or flow rate). In reservoir engineering, dynamic representations that have a spatial domain are an extension of time series data, (i.e., a spatio-temporal system where the value depends on both location and time).
Time series data that comprise multiple parameters may be synchronous or asynchronous. Even when the measurements are overtly synchronized, they may suffer from clock errors (i.e., the clock reading may be identical, but the clocks may not be synchronized. Caution is required twice a year if the time basis is local time and the clocks are adjusted to daylight saving time). Readings may be periodic or aperiodic (i.e., the process temperature may be recorded every 15 seconds while an analyzer reading may be acquired every 120 minutes and a sample may be taken once or twice a week, usually in the morning shift).
The user will need to understand the tag naming conventions, to be aware that the right measurements are retrieved (Sidahmed et al. 2014, 2015). There may be a choice of process historian that is queried to recover the data; a mirror database may be preferred rather than the active primary historian to avoid overloading the primary application. The user will also need to understand the units of measure of the recorded data. This ensures that the range of data (interpolation/extrapolation) is chosen appropriately for the model purpose. This is a key step to ensure model fidelity.
Stationary data (steady state)—Derived from process instrumentation and subject to electronic and process noise, drift, and other forms of calibration error, stationary data does not depend on the time that the reading is acquired as it is not changing with time.
Fixed data—These are attributes of the system rather than that of the operation of the system (e.g., landing depth of a well, maximum flow coefficient of a valve).
Categorical data—The above data types are mostly numeric in nature, but certain data types may be divided into groups, commonly called categorical data. For example, a well type may be divided in to vertical well, horizontal well, or slanted well; an aquifer may be classified as infinite acting, strong, weak, or no aquifer.
Data Redundancy—The question of redundant information arises when identifying the tags to retrieve. Redundancy takes several forms (Sidahmed et al. 2015):
· Temporal redundancy—rather like the situation of stationary data, can we improve our data by a higher frequency or number of measurements taken from a single measurement tag.
· Point measurement redundancy—the designer intended that a single process measurement be acquired by more than one instrument, usually for the purpose of assuring that measurement was either acquired or that a more reliable value was recorded/acted upon through some voting system (e.g., a trip system requiring two out of three measurements to exceed a threshold, rather than a single gauge provide a reading above the threshold value).
· Model based redundancy—a relationship known to be true can be exploited to provide a value or a confirmation of a value (e.g., a system known to contain a pure component can provide an estimate of a state variable such as temperature from a measurement of another state such as pressure). This can be extended to multiple measurements and multiple relationships (e.g., a whole process mass balance and a process simulation can collaborate to estimate the error in every gauge measurement).
Data may often need to be curated based on a number of methods – e.g. missing value imputation, defining limits of variable, pre-processing (scaling), feature engineering, outlier removal, variable transformation and cross-correlation.
Data Cleansing—Most data-driven algorithms are sensitive to outliers and missing data. It is therefore important to prepare the data set accordingly. A first step in the analysis is often to identify entries that are clearly erroneous. This is often a straightforward statistical exercise that detects values that fall outside of a physical range or significantly outside of the distribution (called outlier detection). The problematic entries are corrected when possible or removed if necessary. Next, an effort is made to replace the missing values in the data set by best estimates (called data imputation). When possible, data points that have been removed or that were never available should be estimated to provide the model with a data set as complete as possible. Several approaches can be applied for such exercise such as replacing missing values with a mean, linear interpolation, nearest neighbor estimate, data reconciliation methods, or partial multi-variate models from other available and correlated variables.
Data Transformation—The type of distribution of input variables sometimes have a significant influence on the performance of machine learning algorithms. A good practice is to analyze the distribution of each variable and to investigate transformations that could normalize the data, i.e., define a transformed attribute that follows a distribution resembling a Gaussian. A classic example is to use a logarithm transform of the permeability values rather than the permeability so that the input variable is closer to a normal distribution than to a log-normal distribution. Finally, it is often recommended to normalize each variable. Although most algorithms have internal normalization algorithms, it is a good practice to prepare a data set as normalized as possible to avoid potential numerical errors.
Training, Development, and Test Data Sets—Splitting the data into training, development, and test data sets need careful attention to the details (Ng 2018). Training data set is what the learning algorithm is run on. The development data set is used to tune parameters, select features, and used to make other decisions regarding the learning algorithm (also called the hold-out cross-validation set). The test data set is used to evaluate the performance of the algorithm, but not to make any decisions regarding what learning algorithm or parameters to use. The training and validation (development/test) data sets should come from the same distribution. 
A common heuristic is to split data into 70% for training and 30% for validation (development and test). However, when a lot of data is available, the test data set can be much less than 30% of the data. It is important that the development data set is large enough to detect meaningful changes in the accuracy of the algorithm.
Feature Selection—Features represent the various variables that are used as inputs to train a machine learning model. Feeding redundant variables to a machine learning algorithm can lead to erroneous results. Most analytics effort includes a thorough investigation of covariance between attributes. Variables containing independent information are usually retained amongst highly correlated variables and the redundant factors are typically discarded from the data set. This preliminary screening is most often performed and is sometimes followed by a more general data reduction step. A further reduction in the number of variables in the data set is sometimes performed through algorithms such as principal component analysis (PCA) or multi-dimensional scaling (MDS). This step can lead to a significant reduction in the number of factors while retaining most of the information contained in the data set. While the above methods represent unsupervised selection, it is also possible to use supervised selection methods by examining features in conjunction with a trained model where performance can be computed. This is frequently done using Random Forest algorithms that are well tailored to this problem thanks to the probabilistic sampling step inherent to these methods.
Feature Engineering—Depending on the type of machine learning methods used, it may be advantageous to introduce new features as a transformed variable from other input variables based on domain knowledge. For deep learning methods (refer to Section 3.3), features are usually simple since the algorithms generate their own transformations. However, this approach requires large amounts of data and come at the expense of interpretability. For most other machine learning methods, feature engineering is necessary to convert data to improve performance and interpretability. These steps are important to increase the data quality and have a significant effect on model building and accuracy of the model.
Model Acceptance Criteria
It is important to establish the right model evaluation metrics prior to the model development process. It is recommended that this be a single-number metric that can be used to compare various models. For example, for a classification problem, using both precision (fraction of relevant instances among the retrieved instances) and recall (fraction of retrieved relevant instances over the total amount of relevant instances) would make it harder to compare algorithms. During model development, it is common to try a lot of ideas about algorithm type, architecture, model parameters, choice of features, etc. However, having a single-number evaluation metric (e.g., accuracy, F1 score, etc.) allows sorting of all models according to their performance on this metric and decides quickly what is working best.
Further, the thresholds for desired accuracy and model run time (speed) should also be carefully chosen based on the business objective and the available data set. Establishing optimal error rates or human level performance upfront can set reasonable expectations to assess performance of the machine learning models.
Modeling Approach
The selection of the modeling approach is determined primarily by its purpose, data availability, speed, accuracy, and interpretability requirement.
It is very difficult to know in advance what data-driven modeling approach will work best for a new problem.  It is not uncommon to try out several ideas as part of this iterative process. The process involves starting off with some idea of how to build the model, implement the idea (often in code), and carry out an experiment to analyze the performance (Chatfield 1996). Therefore, the essence is in going around this loop as fast as possible. For this reason, having a good training data set and an established model acceptance criterion is very important.
Learning Model Selection
A variety of machine learning models have been applied to several reservoir engineering applications. The simplest model possible is a multi-variate linear regression. Although the model itself is linear, the preliminary data transformation allows for a model that is effectively non-linear. It is also possible to model the problem in log space which provide a multiplicative rather than an additive model. A preprocessing algorithm known as Alternating Conditional Expectation is sometimes used to identify potential data transformation that lead to a superior fit. More advanced regression algorithms such as Multi-variate Adaptive Regressive Splines (a non-parametric regression technique that automatically models nonlinearities and interactions between variables, Friedman 1991) have also gained popularity over the past few years.
More advanced models are routinely used as well. Neural networks have always been a preferred choice due to their famous universal approximation capacity. For the most part, the oil industry has so far been using simple feed-forward back-propagation algorithms for these applications. These models perform well but iterations on the network architecture are sometimes necessary which makes these models less attractive than simpler algorithms.
Random forest is an algorithm that has gained tremendous popularity recently due to its ease of use. Random forest is essentially a model that combines the learning of an ensemble of decisions trees, each decision tree providing a different classification of the data set with associated estimated for each class. The resulting algorithm is a robust non-linear interpolation algorithm, but the model is very poor at extrapolation in its standard form. Other algorithms such as auto-regressive integrated moving average (ARIMA), finite impulse response (FIR), Box-Jenkins (BJ), support vector machines (SVM), Bayesian belief networks, boosted trees, or convolutional networks have been used as well, although less frequently. Note that ARIMA, FIR, and BJ methods are applied for time series modeling.
Model Calibration
Machine learning models have the capacity to fit the data set extremely accurately. If applied without control, they can learn the data set completely and simply regurgitate the test values perfectly. Such over-fitted models have little predictive accuracy. The most common way to guarantee that machine learning algorithms learn the key trends in the data sets rather than simply memorize the answer is to withhold a portion of the data for validation purposes. Error! Reference source not found. illustrates the typical behavior of model complexity vs. error, where it is desirable to select the optimum model complexity to avoid under-fitting or over-fitting. 
[image: Related image]
Fig. 0.1—Model complexity vs. error.

Therefore, the data set is split into training, development, and test sets. As training progresses, the modeling error for both the training and development sets should decrease. When the development set error starts to increase, the model enters a phase of memorization and the training should be stopped. 
Model Validation
Basic error analysis is commonly used to examine development set examples to understand the underlying causes of the errors. Bias and variance are two major sources of error in machine learning. Informally, the algorithm’s error rate on the training data set is often referred to as the bias, whereas variance refers to how much worse the development (or test) set performs compared to the training set. Understanding them will help decide on future course of action—i.e., add more data, change learning algorithm, etc. When the error metric is mean squared error, then the total error can be expressed as a sum of bias and variance. 
When high bias is found, some courses of action include:
· Change model algorithm or architecture
· Increase model size (e.g., number of layers in neural network)
· Modify input features based on insights from error analysis
· Reduce or eliminate regularization
· Increase ranges of parameters
When high variance is found, some courses of action include:
· Add data to training set to avoid over-fitting
· Decrease model size (e.g., number of layers in neural network)
· Select features to decrease number of input features 
· Use regularization
· Decrease ranges of parameters
Model Deployment
Model deployment can be done in the form of descriptive model deployment or predictive model deployment. Descriptive or diagnostic model deployment is mostly incorporating the visualization with different plotting options analyzing the data structure; basically some visual analytics is deployed. Predictive model deployment requires a standalone model (e.g., equation expressed as a function that operates on well-defined inputs) that is often deployed together with an application program interface (API) a visualization interface and each new data set is fed into the model and the model output (predicted target, i.e., production value) is displayed on the visualization interface.
Once the models are generated and deployed, it is often necessary to manage existing models for further analysis, and historical comparison. The process requires versioning the models and saving them into a model catalogue or a repository so that it can be accessed easily later.
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McCain et al. (Eqs. 7-12) (1998) 3.5 124
Velarde et al. (1999) 1.2 12.5
Labeadi (1990) 0.0 12.6
Standing* (1947) —21 12.7
Lasater** (1958) —-13 13.3
Levitan and Murtha (1999) 42 139
Al-Shammasi (1999) —14 143
Vazquez and Beggs (1980) 7.1 14.6
Omar and Todd* (1993) 54 155
De Ghetto et al. (1994) 8.6 15.6
Kartoatmodjo and Schmidt (1994) 4.4 15.7
Dindoruk and Christman* (2001) 0.9 16.1
Glaso (1980) 4.8 16.8
Fashad et al.* (1996) —-5.6 17.8
Al-Marhoun* (1988) 8.8 17.8
Dokla and Osman* (1992) 0.3 21.8
Almehaideb* (1997) —0.6 223
Khairy et al.* (1998) 49 23.1
Macary and El Batanoney* (1992) 12.6 23.1
Hanafy et al.* (1997) 10.6 28.8
Petrosky and Farshad* (1998) 17.7 37.7
Yi (2000) 424 452

*Author restricted the correlation to a specific geographical area.
**Not valid for “API<18°.
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