SPE DISTINGUISHED LECTURER SERIES

is funded principally through a grant of the

SPE FOUNDATION

The Society gratefully acknowledges those companies that support the program by allowing their professionals to participate as Lecturers.

And special thanks to The American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME) for their contribution to the program.
CHEMICAL EOR – THE PAST, DOES IT HAVE A FUTURE?

Sara Thomas
PERL Canada Ltd
STSAUS@aol.com
THE PAST: Limited Commercial Success

FUTURE: Very Bright
- Past experience
- High oil prices
- Scaled models
OBJECTIVES

- Why chemical EOR methods have not been successful?
- Process limitations
- Current status of chemical floods
- Recent changes that make such methods attractive
CHEMICAL EOR HOLDS A BRIGHT FUTURE

- Conventional oil RF <33%, worldwide
 - “Unrecoverable” oil = 2×10^{12} bbls
 - Much of it is recoverable by chemical methods

- Chemical methods are attractive:
 - Burgeoning energy demand and high oil prices, most likely for the long-term
 - Diminishing reserves
 - Advancements in technologies
 - Better understanding of failed projects
CHEMICAL EOR TARGET IN SELECTED COUNTRIES

Assumed:
Primary Rec. 33.3 %OOIP
Chem. Flood Rec. 33.3 %OIP
CHEMICAL METHODS

- Chemical EOR methods utilize:
 - Polymers
 - Surfactants
 - Alkaline agents
 - Combinations of such chemicals
 - ASP (Alkali-Surfactant-Polymer) flooding
 - MP (Micellar-Polymer) flooding
CLASSIFICATION

CHEMICAL METHODS

- Alkali
- Surfactant
- Micellar
- Polymer
- Emulsion
- ASP
CHEMICAL FLOODS PROJECTS AND PRODUCTION IN THE USA

Oil Production, B/D

No. of Projects

Years:
- 1980
- 1982
- 1984
- 1986
- 1988
- 1990
- 1992
- 1994
- 1996
- 1998
- 2000
- 2002
- 2004

Data Points:
- 1980: 0
- 1982: 0
- 1984: 0
- 1986: 0
- 1988: 0
- 1990: 0
- 1992: 0
- 1994: 0
- 1996: 0
- 1998: 0
- 2000: 0
- 2002: 0
- 2004: 0
Chemical Floods - CURRENT STATUS WORLDWIDE

Total Number of Projects: 27
Chemical Floods - PRODUCTION WORLDWIDE

Total oil production: 300,000 B/D
OBJECTIVES OF CHEMICAL FLOODING

- Increase the Capillary Number N_c to mobilize residual oil
- Decrease the Mobility Ratio M for better sweep
- Emulsification of oil to facilitate production
Chemical Flooding -

GENERAL LIMITATIONS

- Cost of chemicals
- Excessive chemical loss: adsorption, reactions with clay and brines, dilution
- Gravity segregation
- Lack of control in large well spacing
- Geology is unforgiving!
- Great variation in the process mechanism, both areal and cross-sectional
POLYMER FLOODING

- Loss to rock by adsorption, entrapment, salt reactions
- Loss of injectivity
- Lack of control of in situ advance
- High velocity shear (near wellbore), ageing, cross-linking, formation plugging
- Often applied late in waterflood, making it largely ineffective
Polymer Flood - FIELD PERFORMANCE
Sanand Field, India

Oil Rate, m³/D

Cumulative Oil Prod., Mm³

1989 1991 1993 1995
Polymer Flood – FIELD PROJECTS

<table>
<thead>
<tr>
<th>Project</th>
<th>Flood Type</th>
<th>Formation</th>
<th>Polymer</th>
<th>Rec., %OIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Taber Manville South</td>
<td>Secondary</td>
<td>Sandstone</td>
<td>PAA</td>
<td>2</td>
</tr>
<tr>
<td>2 Pembina</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>0</td>
</tr>
<tr>
<td>3 Wilmington</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>0</td>
</tr>
<tr>
<td>4 East Colinga</td>
<td>"</td>
<td>"</td>
<td>Biopolymer</td>
<td>0</td>
</tr>
<tr>
<td>5 Skull Creek South</td>
<td>"</td>
<td>"</td>
<td>PAA</td>
<td>8</td>
</tr>
<tr>
<td>6 Skull Creek Newcastle</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>10</td>
</tr>
<tr>
<td>7 Oerrel</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>23</td>
</tr>
<tr>
<td>8 Hankensbuettel</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>13</td>
</tr>
<tr>
<td>9 Owasco</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>7</td>
</tr>
<tr>
<td>10 Vernon</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>30</td>
</tr>
<tr>
<td>11 Northeast Hallsville</td>
<td>"</td>
<td>Carbonate</td>
<td>"</td>
<td>13</td>
</tr>
<tr>
<td>12 Hamm</td>
<td>"</td>
<td>Sandstone</td>
<td>"</td>
<td>9</td>
</tr>
<tr>
<td>13 Sage Spring Cr. Unit A</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>1.2</td>
</tr>
<tr>
<td>14 West Semlek</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>5</td>
</tr>
<tr>
<td>15 Stewart Ranch</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>8</td>
</tr>
<tr>
<td>16 Kummerfeld</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>6</td>
</tr>
<tr>
<td>17 Huntington Beach</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>4</td>
</tr>
<tr>
<td>18 North Stanley</td>
<td>Tertiary</td>
<td>"</td>
<td>"</td>
<td>1.1</td>
</tr>
<tr>
<td>19 Eliasville Caddo</td>
<td>Tertiary</td>
<td>Carbonate</td>
<td>"</td>
<td>1.8</td>
</tr>
<tr>
<td>20 North Burbank</td>
<td>Tertiary</td>
<td>Carbonate</td>
<td>"</td>
<td>2.5</td>
</tr>
</tbody>
</table>
SURFACTANT FLOODING

- Variations
 - Surfactant-Polymer Flood (SP)
 - Low Tension Polymer Flood (LTPF)
- Adsorption on rock surface
- Slug dissipation due to dispersion
- Slug dilution by water
- Formation of emulsions
 - Treatment and disposal problems
Surfactant flood - FIELD PROJECTS

<table>
<thead>
<tr>
<th>Project</th>
<th>Size</th>
<th>Type</th>
<th>PV</th>
<th>T. Rec. % OIP</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Benton ILL</td>
<td>1 acre, 5 - spot</td>
<td>preflush, surf. formulation</td>
<td>1.4</td>
<td>10</td>
<td>Injection problems, Emulsion production, Poor sweep efficiency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>polymer buffer</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Salem Unit ILL</td>
<td>5 acre, 5 - spot</td>
<td>preflush, surf. formulation</td>
<td>0.3</td>
<td>14</td>
<td>Surf. Precipitation, High surfactant loss, Schedule change due to delay in surf. Supply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>polymer buffer</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Big Muddy WY</td>
<td>10 - acre, 5 - spot x 9</td>
<td>preflush, surf. formulation</td>
<td>0.1</td>
<td>10</td>
<td>Faults and fractures, Poor fluid confinement, Pressure parting, Poor sweep efficiency Emulsion production, Corrosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>polymer buffer</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Glenn Pool OK</td>
<td>92 acres</td>
<td>preflush, surf. formulation</td>
<td>0.1</td>
<td>32</td>
<td>Lack of mobility control, Low oil prices made expansion uneconomic.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>polymer buffer</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Surfactant flood - FIELD PERFORMANCE

Glenn Pool Field, OK

Oil Rate, B/D or WOR

1984 85 86 87 88 89 90 91 92

1,000

100

10

100

WOR

OIL
ALKALINE FLOODING

- Process depends on mixing of alkali and oil
 - Oil must have acid components
- Emulsification of oil, drop entrainment and entrapment occur
 - Effect on displacement and sweep efficiencies?
- Polymer slugs used in some cases
 - Polymer alkali reactions must be accounted for
- Complex process to design
Alkaline flooding - FIELD PERFORMANCE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% PV</td>
<td>wt%</td>
<td>% PV</td>
<td>mg/g rock</td>
<td>%OIP</td>
</tr>
<tr>
<td>1 Whittier</td>
<td>8</td>
<td>0.2</td>
<td>51</td>
<td>2.4-11.2</td>
<td>4</td>
</tr>
<tr>
<td>2 Singleton</td>
<td>8</td>
<td>2.0</td>
<td>40</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>3 N. Ward Estes</td>
<td>15</td>
<td>4.9</td>
<td>64</td>
<td>17.2</td>
<td>8</td>
</tr>
<tr>
<td>4 L. A. Basin</td>
<td>5</td>
<td>0.4</td>
<td>30</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>5 Orcutt Hill</td>
<td>2</td>
<td>0.42</td>
<td>50</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>6 Van</td>
<td>12</td>
<td>0.14</td>
<td>25-35</td>
<td>0.6-1.2</td>
<td>3</td>
</tr>
<tr>
<td>7 Kern River</td>
<td>48</td>
<td>0.15</td>
<td>52</td>
<td>1.3</td>
<td>none</td>
</tr>
<tr>
<td>8 Harrisburg</td>
<td>9</td>
<td>2.0</td>
<td>30-40</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>9 Brea-Olinda</td>
<td>1.2</td>
<td>0.12</td>
<td>50-60</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>
ASP: ALKALI-SURFACTANT-POLYMER FLOODING

- Several variations:
 - ASP
 - SAP
 - PAS
 - Sloppy Slug

 Injected as premixed slugs or in sequence

- Field tests have been encouraging
- Successful in banking and producing residual oil
- Mechanisms not fully understood
ASP PILOT – Daqing, China

Oil Rate

Oil Cut

Water

Polymer

ASP

Oil Rate, m³/D; Oil Cut, %
Utilizes microemulsion and polymer buffer slugs
Miscible-type displacement
Successful in banking and producing residual oil
Process Limitations:
- Chemical slugs are costly
- Small well spacing required
- High salinity, temperature and clay
- Considerable delay in response
- Emulsion production
ASP vs. MICELLAR FLOOD -
Lab Results – Mitsue Oil Core Floods

Earlier oil breakthrough and quicker recovery in micellar flood

Micellar Flood
- Slug 5% Buffer 50%
- Oil Cut
- Soi 32%
- 92% OIP

ASP Flood
- Alkali 5%, Surfactant 10%, Polymer 60%
- Oil Cut
- Soi 38%
- 80% OIP

Oil Cut, %; Cum. Recovery, % OIP

Pore Volumes Injected

Pore Volumes Injected
Micellar flood –
TYPICAL PERFORMANCE
Bradford Special Project No. 8

![Graph showing Oil Rate and Oil Cut over time from Dec. 81 to Dec. 85. The graph indicates a rise in Oil Cut and Oil Rate post-micellar injection.](Image)

- **Oil Rate** in yellow, starts to rise significantly post Nov. 82 (Dec. 82).
- **Oil Cut** in red, shows a rise post Nov. 82 (Dec. 82), reaching a peak in Dec. 83, and then stabilizing post Dec. 84.

Note: The graph illustrates the typical performance of micellar flood with significant changes in Oil Rate and Oil Cut post-micellar injection.
Micellar flood – PROCESS EFFICIENCY

Cumulative Oil Recovery, %OIP vs. Micellar Slug Size, %PV

Solid lines - Lab
Dots - Field

Henry S
Bedrock
Wilkins
Henry W
119-R

ST200601
ASP AND MP FIELD PROJECTS

<table>
<thead>
<tr>
<th>ASP Floods</th>
<th>Started</th>
<th>Appln.</th>
<th>Acre</th>
<th>Rec., % OOIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>David, Alberta</td>
<td>1986</td>
<td>Tertiary</td>
<td>252</td>
<td>21</td>
</tr>
<tr>
<td>West Kiehl, Wyoming</td>
<td>1987</td>
<td>"</td>
<td>106</td>
<td>34.4</td>
</tr>
<tr>
<td>Gudong, China</td>
<td>1992</td>
<td>"</td>
<td>766</td>
<td>29.4</td>
</tr>
<tr>
<td>Cambridge, Wyoming</td>
<td>1993</td>
<td>"</td>
<td>72</td>
<td>26.8</td>
</tr>
<tr>
<td>Daqing, China</td>
<td>1994</td>
<td>"</td>
<td>8.4</td>
<td>23.9</td>
</tr>
<tr>
<td>Karamay, China</td>
<td>1996</td>
<td>"</td>
<td>766</td>
<td>24</td>
</tr>
<tr>
<td>Viraj, India</td>
<td>2002</td>
<td>"</td>
<td>68</td>
<td>24</td>
</tr>
</tbody>
</table>

Micellar Floods

<table>
<thead>
<tr>
<th>Micellar Floods</th>
<th>Started</th>
<th>Appln.</th>
<th>Acre</th>
<th>Rec., % OOIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedrick (IL)</td>
<td>1962</td>
<td>Secondary</td>
<td>2.5</td>
<td>49.7</td>
</tr>
<tr>
<td>Robinson, 119-R (IL)</td>
<td>1968</td>
<td>Tertiary</td>
<td>40</td>
<td>39</td>
</tr>
<tr>
<td>Benton (IL) Shell</td>
<td>1972</td>
<td>"</td>
<td>160</td>
<td>29</td>
</tr>
<tr>
<td>Robinson, 219-R (IL)</td>
<td>1974</td>
<td>"</td>
<td>113</td>
<td>27</td>
</tr>
<tr>
<td>North Burbank (OK)</td>
<td>1976</td>
<td>"</td>
<td>90</td>
<td>11</td>
</tr>
<tr>
<td>Robinson, M1 (IL)</td>
<td>1977</td>
<td>"</td>
<td>407</td>
<td>50</td>
</tr>
<tr>
<td>Bradford (PA)</td>
<td>1980</td>
<td>"</td>
<td>47</td>
<td>50</td>
</tr>
<tr>
<td>Salem Unit (IL)</td>
<td>1981</td>
<td>"</td>
<td>200</td>
<td>47</td>
</tr>
<tr>
<td>Louden (IL)</td>
<td>1977</td>
<td>"</td>
<td>40</td>
<td>27</td>
</tr>
<tr>
<td>Louden (IL)</td>
<td>1980</td>
<td>"</td>
<td>80</td>
<td>33</td>
</tr>
<tr>
<td>Chateaurenard, (France)</td>
<td>1983</td>
<td>"</td>
<td>2.5</td>
<td>67</td>
</tr>
</tbody>
</table>

* % OOIP
OTHER METHODS

- Emulsion flooding
- Micellar-Alkaline-Polymer flood (MAP)
- ASP-Foam process
- Surfactant huff n’puff
- Surfactant with thermal processes
REASONS FOR FAILURE

- Low oil prices in the past
- Insufficient description of reservoir geology
 - Permeability heterogeneities
 - Excessive clay content
 - High water saturation
 - Bottom water or gas cap
 - Fractures
- Inadequate understanding of process mechanisms
- Unavailability of chemicals in large quantities
- Heavy reliance on unscaled lab experiments
SCALE-UP METHODS

- Require:
 - Knowledge of process variables or complete mathematical description
 - Derivation of scaling groups
 - Model experiments
 - Scale-up of model results to field

- Greater confidence to extend lab results to field
SCALING GROUPS

- **Micellar Flood:**

\[
\begin{bmatrix}
\frac{L}{d} \\
\frac{\Delta p}{\rho_o g h} \\
\frac{P_{CL_{EM}}}{P_{CE_{MM}}} \\
\frac{k_{RW_{MAX}}}{k_{RO_{MAX}}} \\
\frac{k_{L_{MAX}}}{k_{RO_{MAX}}} \\
\frac{q_{A}^*}{q_{L}^*} \\
\frac{q_{E}^*}{q_{L}^*}
\end{bmatrix}
\begin{bmatrix}
\frac{\phi S_{oi_{0}} \mu_{0} L^2}{kk_{RO_{MAX}} \Delta p} \\
\frac{q_{L}^* \mu_{0} L^2}{kk_{RO_{MAX}} \Delta p} \\
\phi S_{oi} K_{L} \mu_{0} \\
K_{L} \\
K_{T} \\
\frac{C_{S}}{S_{oi} \rho_{o} C_{L_s}} \\
\frac{C_{S}}{C_{p}}
\end{bmatrix}
\]

- **Additional Groups:**
 - Slug Size, Flood Rate, Mixing Coefficient, Oil Recovery

\[
(PV)_{SP} = \left(\frac{S_{oi_{p}}}{S_{oi_{M}}} \right) (PV)_{SM} \quad \nu_{p} = \left(\frac{k_{p}}{k_{m}} \right) \nu_{M} \quad \alpha_{p} = \left(\frac{S_{oi_{M}}}{S_{oi_{p}}} \right) \alpha_{M} \quad r_{p} = \frac{S_{oi_{M}} \left(1 - r_{M} \right)}{S_{oi_{p}}}
\]
RESULTS: PREDICTION vs. ACTUAL

![Graph showing oil recovery comparison between predicted and actual performance](image)

- **Predicted**
- **Actual**

- **X-axis**: Pore Volumes Produced
- **Y-axis**: Oil Recovery, %OIP

ST200601
CHEMICAL EOR & HEAVY OIL

- Problems:
 - Unfavourable mobility ratio
 - Gravity segregation
 - Rock-fluid reactions, chemical loss, dilution
 - Lack of scaling criteria, inadequate simulation
 - Often used where steam is not suitable

- Applicable methods:
 - Surfactant flooding unsuccessful
 - Alkaline flooding unsuccessful
 - CO₂ immiscible; cyclic stimulation Limited success with WAG
CHEMICAL EOR OFFSHORE

Challenges:
- Platform space limited
- High salinity
- Large well spacing
- Environmental concerns

Likely Processes:
- Micellar flooding
- ASP flooding
- Polymer flooding

* Solutions may be mixed onshore and shipped
* Constant supervision required
IMPROVED CHEMICALS

- Candidate reservoirs often have:
 - High temperature
 - High salinity
 - High water saturations
 - Low permeability
 - Clay content >5%

- Need chemicals suitable for above conditions
 - Polymers stable above 80° C and at high salinity
 - Polymers with high RF
 - Surfactant with low adsorption, tolerant of clay
 - Inexpensive chemicals coupling surfactant and polymer properties
EOR SCREENING CRITERIA

Most important: geology and mineralogy

- Oil viscosity < 35 cp
- Oil API gravity > 30 API
- Permeability ≥ 100 md
- Porosity ≥ 15%
- Temperature < 150 F
- Depth < 9,000 ft
- Pressure not critical
- Oil saturation ≥ 45%
- Oil in place at process start ≥ 600 Bbl/acre-ft

- Formation sdst preferred
- Thickness 20-30 ft
- Stratification desirable
- Clay content < 5%
- Salinity < 20,000 ppm
- Hardness < 500 ppm
- Oil composition Light, intermediates & organic acids desirable
- No bottom water or gas cap
HOW TO PLAN A FLOOD

- Choose a process likely to succeed in a candidate reservoir
- Determine the reasons for success *or* failure of past projects of the process
- Research to “fill in the blanks”
 - Determine process mechanisms
 - Derive necessary scaling criteria
 - Carry out lab studies
- Field based research
- Establish chemical supply
- Financial incentives essential
PROCESS EVALUATION

- Compare field results with lab (numerical) predictions
- Relative permeability changes?
- Oil bank formation? If so, what size?
- Mobility control?
- Fluid injectivity?
- Extent of areal and vertical sweep?
- Oil saturations from post-flood cores?
INTERPRETATION OF RESULTS

- Large number of chemical floods with little technical success
- Field tests implemented for tax advantage misrepresent process performance
- Questionable interpretations distort process potential
COST OF CHEMICALS

- As the oil prices rise, so does the cost of chemicals, but not in the same proportion
- Typical Costs:
 - Polymer - $3/lb
 - Surfactant - $1.20/lb
 - Crude oil - $60/bbl
 - Caustic - $0.60/lb
 - Isopropanol - $20/gallon
 - Micellar slug - $25/bbl
- Process Efficiency: volume of oil recovered per unit volume (or mass) of chemical slug injected
THE CASE FOR CHEMICAL FLOODING –

- Escalating energy demand, declining reserves
- Two trillion bbl oil remaining, mostly in depleted reservoirs or those nearing depletion
- Infill drilling often meets the well spacing required
- Fewer candidate reservoirs for CO₂ and miscible
- Opportunities exist under current economic conditions
- Improved technical knowledge, better risk assessment and implementation techniques
CONCLUSIONS

- Valuable **insight** has been gained through chemical floods in the past – failures as well as successes

- MP and ASP methods hold the greatest **potential** for commercial success; polymer flooding a third option

- Chemical flooding processes must be **re-evaluated** under the current technical and economic conditions
CONCLUSIONS –

- Chemical floods offer the **only chance of commercial success** in many depleted and waterflooded reservoirs

- Chemical flooding is **here to stay** because it holds the key to maximizing the reserves in our known reservoirs