SPE DISTINGUISHED LECTURER SERIES
is funded principally through a grant of the
SPE FOUNDATION

The Society gratefully acknowledges those companies that support the program by allowing their professionals to participate as Lecturers.

And special thanks to The American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME) for their contribution to the program.
Maximum Reservoir Contact Wells

A new Generation of Wells for Developing Tight Reservoir Facies

by:
Salam P. Salamy-Saudi Aramco

SPE Distinguished Lecturer Series Program
2004 - 2005
Outline

- Evolution of MRC Well Concept
- Implementation: Expanding the Learning Curve
 - MRC Objectives and Designs
 - Results
- Impact on Unit Development Cost
- Summary
- Future Focus Areas- Way Forward!
World Growth of Horizontal Wells

- Annual Well Count
- Cumulative Wells

Annual Well Count vs. Cumulative Wells
Growth Of Horizontal Wells in Saudi Aramco
SHAYBAH FIELD

Shaybah Field Located in Rub’ al-Khali Desert, Saudi Arabia
Developed with Single-Lateral one Km Horizontal Wells in 1996.
Producing Formation the Shu’aiba
Low Permeability (Avg. 13 mD)

Size: 60 Km. X 15 Km.
Shaybah Horizontal Well Flow Profile

Average Production Profile

1Km horizontal well

- Heel: 40%
- Middle: 27%
- Toe: 33%

TD

85% of the Logged Section Showed Flow Contribution
Case Study: GOR Optimization
Horizontal Length Assessment

Cum Oil, MSTB

GOR, SCF/STB

3 Km
2 Km
1 Km

CUM OIL
Horizontal Wells PI as Function of Reservoir Contact – Shaybah Field
Shaybah Field Well Performance

Cum GOR Vs. Cum Oil as Function of Length

Delay Gas Breakthrough
Improve Oil Recovery
Evolution of Horizontal Drilling in Shaybah

- **1999 MP Wells**
- **2000 MP Wells**
- **2001 MP Wells**

- **1 Km Contact**
- **2 Km Contact**
- **3 Km Contact**

Reservoir Contact, Km
Maximum Reservoir Contact (MRC):

A well with an aggregate reservoir contact in excess of 5 kilometers via a single or multi-lateral configuration.
Drivers / Desired Results

- Unit Development Costs
- Unit Operating Costs
- Draw down at a given flow rate
- Water and Gas breakthroughs

Minimize

Maximize

- Long term performance
- Production rate / PI
- Sweep efficiency / Reserves
Challenges

- Safety
- Well Damage
- Cost
- Monitoring
- Reliability
- Complexity
- Control & Re-Entry
The New Architecture: Larger Foot Print

SHYB-753 (Fork)
7.9 Km

SHYB-220 (Hybrid)
12.3 Km

Offshore Carbonate (Fishbone)
7.8 Km

7" liner
MRC Performance (South Shaybah)

<table>
<thead>
<tr>
<th>Well No.</th>
<th>Reservoir Contact, Km</th>
<th>PI B/D/PSI</th>
<th>Rate MBOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>377</td>
<td>3</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>378</td>
<td>5.8</td>
<td>82</td>
<td>8</td>
</tr>
<tr>
<td>379</td>
<td>3</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>380</td>
<td>8.5</td>
<td>105</td>
<td>10</td>
</tr>
<tr>
<td>381</td>
<td>3</td>
<td>67</td>
<td>6.5</td>
</tr>
<tr>
<td>Avg. 3-Km</td>
<td>3</td>
<td>39</td>
<td>4.0</td>
</tr>
</tbody>
</table>

SHYB-380:

2.5 Fold Increase In PI Compared to Average 3-Km Well
Fork and Fishbone Type Sidetracked in Open Hole

- The total depth: 16,026’
- Contact: 40,384’ (12.3 km)
- 12 MBOD

<table>
<thead>
<tr>
<th>Laterals</th>
<th>Length (ft)</th>
<th>ROP (ft/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>9,796</td>
<td>46.6</td>
</tr>
<tr>
<td>L-1</td>
<td>5,350</td>
<td>39.1</td>
</tr>
<tr>
<td>L-2</td>
<td>5,951</td>
<td>39.7</td>
</tr>
<tr>
<td>L-3</td>
<td>3,052</td>
<td>49.6</td>
</tr>
<tr>
<td>L-4</td>
<td>2,255</td>
<td>56.4</td>
</tr>
<tr>
<td>L-5</td>
<td>2,964</td>
<td>49.4</td>
</tr>
<tr>
<td>L-6</td>
<td>3,597</td>
<td>61.5</td>
</tr>
<tr>
<td>L-7</td>
<td>2,537</td>
<td>59.0</td>
</tr>
<tr>
<td>L-8</td>
<td>4,882</td>
<td>76.9</td>
</tr>
</tbody>
</table>
MRC Performance (South Shaybah)

<table>
<thead>
<tr>
<th>Well No.</th>
<th>Reservoir Contact, Km</th>
<th>PI B/D/PSI</th>
<th>Rate MBOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>12.3</td>
<td>126</td>
<td>12</td>
</tr>
<tr>
<td>219</td>
<td>2</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>207</td>
<td>1</td>
<td>17</td>
<td>2</td>
</tr>
</tbody>
</table>

SHYB-220:
- 6 Fold Increase in PI and Rate Compared to 1-Km Well
PI /Rate Vs. Reservoir Contact

- **Reservoir Contact, Km**
 - 1.0
 - 2.0
 - 3.0
 - 5.8
 - 8.5
 - 12.3

- **PI, bbl/day/Psi**
 - 0
 - 20
 - 40
 - 60
 - 80
 - 100
 - 120
 - 140

- **Rate, MBOD**
 - 0
 - 2
 - 4
 - 6
 - 8
 - 10
 - 12
 - 14

Legend:
- **PI, STBD/Psi**
- **Rate, MBOD**
Other Field Examples-MRC Wells

- Onshore Carbonate Reservoir
- Offshore Carbonate Reservoir
Onshore/Carbonate Reservoir

MRC Application
MRC Well Results- PI and Rate Test

Onshore MRC Well Performance

- PI=40 b/d/psi
- PI=85 b/d/psi

Production Rate, MBOD

Offset Horizontal

MRC Well

PI=40 b/d/psi

PI=85 b/d/psi
Offshore/Carbonate Reservoir
- Tested: 14.0 MBOD
- Production Rate:
 - MRC: 10 MBOD
 - Off-set 1 Km: 3 MBOD
Outline

- Evolution of MRC Concept
- Implementation: Expanding the Learning Curve
 - Designs
 - Results
- Impact on Unit Development Cost
- Summary
- Future Focus Areas - Way Forward!
Extra versus Intra Reservoir Drilling Time

1-Km SHYB-257

- Extra Reservoir: 71%
- Intra Reservoir: 29%

MRC 8.5 Km SHYB-380

- Extra Reservoir: 26%
- Intra Reservoir: 74%
Extra versus Intra Reservoir Unit Cost

- Extra Reservoir: 38%
- Intra Reservoir: 62%

1-Km SHYB- 257:
- Extra Reservoir: 32%
- Intra Reservoir: 68%

MRC 8.5 Km SHYB- 380:
- Extra Reservoir: 38%
- Intra Reservoir: 62%
Summary

✓ MRC Wells mark the beginning of a new era.

✓ The experience to date is limited but promising. Over 25 MRC wells have been drilled to-date.

✓ Primary Beneficiaries: Tight-facies.

✓ Opportunities: Medium & High Quality Reservoirs.

✓ MRCs combined with Intelligent Well Technologies will reduce costs.

✓ Drill bit: Tool for modifying Reservoir architecture - Knowledge Management Tool.

✓ Guidelines and Best Practices to Ensure Proper Implementation.
Future Focus Areas- Way Forward

- Formation Damage: Prevention over Remediation
- Reducing Cost Smart/Intelligent Wells
- Appropriate Integration of New Technologies: Solution Oriented vs. Application
THANK YOU