SPE DISTINGUISHED LECTURER SERIES is funded principally through a grant of the SPE FOUNDATION.

The Society gratefully acknowledges those companies that support the program by allowing their professionals to participate as Lecturers.

And special thanks to The American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME) for their contribution to the program.
Unlocking the planet’s heavy oil and bitumen resources – A look at SAGD

Subodh Gupta
EnCana Corporation
March, 2005

Author wishes to express thanks for Encana’s support and encouragement in allowing to participate in the Distinguished Lecturer Program and in putting this presentation together.
A Power Hungry World!

Source: UN Population Division, Energy Information Administration
Predictions based on Hubbert’s theory suggest declining conventional oil supply

Much debate about exact time of the peak

Source: Duncan and Youngquist, Campbell and Laherrerre
Plenty of Fossil Fuel!

- Total fossil fuel over 100 times the conventional oil
- More unconventional oil than conventional

Enormous Potential

<table>
<thead>
<tr>
<th>Country</th>
<th>Heavy oil / bitumen in place (trillion bbls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>1.6</td>
</tr>
<tr>
<td>Venezuela</td>
<td>1.2</td>
</tr>
<tr>
<td>FSU</td>
<td>0.2 - 2.5</td>
</tr>
</tbody>
</table>

Source: AEUB, CAPP, EIA, AOSTRA, UNITAR
Consequence of being unconventional

Light vs. Heavy

- More difficult to recover
- Requires more downstream processing
The Downstream Challenge

Upgrading process

Differential
5 – 10 $US/bbl
How to produce this stuff
The Upstream Challenge

Cost of Production

US$/bbl

Canadian Oilsands
Venezuelan Heavy-oil
Middle East
Conventional

Not easy to recover

In situ viscosity
- Canadian Oilsands: > 1e6 cP
- Venezuelan Heavy oil: ~3-10e3 cP

Technology and economics constantly improving
- Oilsands context

Source: based on DOE report 2050(draft)
Canadian Oil Sands: Recovery Technologies

- Surface Mining
- In Situ
 - CSS
 - SAGD

Alberta
- Athabasca deposit 213 billion m3
- Peace River deposit 25 billion m3
- Cold Lake deposit 32 billion m3
Three-Step Process
- Mine Oilsands
- Separate Oil from Sand
 - Washing with Hot Water
- Upgrade the Extracted Oil to Synthetic Crude
Surface Mining

- **Major projects**
 - **Current**
 - Suncor’s mining operations
 - Syncrude’s mining operations
 - Athabasca Oil Sands Project
 - **Upcoming**
 - Kearl Mine, Horizon, Northern Lights and Fort Hills
 - **Current Production Capacity** ~650kbd
 - Announced projects to increase to >1million b/d in 10 years

- **Issues to consider**
 - Economics is location (depth < 75m) dependent
 - Only 5 to 10% reserves suitable
 - Scale of economy requires huge capital
In Situ Processes
Cyclic Steam Stimulation

- Major projects/operators
 - Cold Lake - Imperial
 - Primrose – CNRL

- Advantage
 - Lower surface disturbance
 - Less sensitive to shale barriers

- Issues to consider
 - Recovery ~25-30%
Steam Assisted Gravity Drainage (SAGD)

Advantage
- Lower surface disturbance
- Lower SOR: 2.5 to 3.5
- Economic recoveries ~ 65%
- Modular capital requirements
SAGD
Current and upcoming projects tell the story

- **Current Major Projects**
 - Foster Creek (Encana)
 - Christina Lake (Encana)
 - Mackay River (PetroCanada)
 - Firebag (Suncor)
 - Primrose/Wolflake (CNRL)
 - Hangingstone (JACOS)

- **Upcoming Projects**
 - Joslyn Creek (Deer Creek)
 - Surmont (ConocoPhillips/TFE)
 - Long Lake (Nexen/OPTI)
 - Tucker Lake (Husky)
 - Sunrise (Husky)
 - Jackfish (Devon Energy)
 - Orion (BlackRock)

Source: based on DOB, Jan. 2005, ADOE
SAGD requires steam
steam = fuel and water

- Energy efficiency (GJ/bbl)
 - Heat is an expensive input

- Water usage
 - Water recycle adds to the cost

- Emissions
It costs to heat

Use cheaper fuel
- Bitumen/Residue to substitute Gas
 - Nexen/OPTI
- Other talked-about alternatives
 - Heavyoil/Coke/Coal/Nuclear

Reduce heat requirement
- Process Improvement
 (Also reduces water requirement)
 - Low Pressure Operation
 - Use of Solvents
 - SAP (SAGD + solvent)
Low Pressure SAGD Operation

Effect of Pressure on SOR and Rate

25mx7D reservoir

Issues
- artificial lift
- role of solution gas

Source: Edmunds and Chhina, JCPT, Dec. 2001
What role can solvents play? ..SAP
Enhanced Gravity Drainage in SAP

\[Q = \sqrt{\frac{2 \cdot \phi \cdot \Delta S_o \cdot K \cdot g \cdot \alpha \cdot h}{m \cdot v_s}} \]

\[Q \propto \sqrt{\frac{1}{\mu}} \]

steam + solvent + condensed solvent + oil + water
Expected Production with Combining Solvent with SAGD

Expected SAP Benefits (example)

<table>
<thead>
<tr>
<th></th>
<th>SAGD</th>
<th>SAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOR</td>
<td>2</td>
<td>1.4</td>
</tr>
<tr>
<td>Recovery</td>
<td>65%</td>
<td>(as high as) 90%</td>
</tr>
<tr>
<td>Lower Capital Intensity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Emissions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less Water Usage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Possible In Situ Upgrading</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Encana’s Senlac SAP Pilot 2001-2002

Senlac Thermal Facility – Phase C

To assess

- Rate enhancement
- Solvent retention
- In situ upgrading
Senlac SAP Test

Senlac Pilot, 2001-2002
- Butane used as solvent
- Oil rate increase of over 50%
- Test cut short due to reservoir containment issue
Senlac SAP Test

Senlac Pilot, 2001-2002
- Butane used as solvent
- Oil rate increase of over 50%
- Test cut short due to reservoir containment issue
- approx. upgrading: 1^0 API
 - (over base level 12.7^0 API)
Senlac SAP Test

Senlac Pilot, 2001-2002
- Butane used as solvent
- Oil rate increase of over 50%
- Test cut short due to reservoir containment issue
- approx. upgrading: 1° API
 - (over base level 12.7° API)
- Over 70% solvent recovery
Encana’s Christina Lake SAP Test

Christina Lake SAP Pilot, 2004-2007
- Prove (Athabasca context)
 - rate acceleration
 - solvent retention
 - In situ upgrading
- Pilot started July 2004
SAGD and beyond

In situ Processes and Energy Efficiency

<table>
<thead>
<tr>
<th>Energy/bbl</th>
<th>SAGD</th>
<th>SAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>Under development</td>
<td></td>
</tr>
</tbody>
</table>
Solvent without steam - VAPEX

- Prospects
 - Minimal energy requirement
 - No water recycle issue
 - Some downhole upgrading

- Awaiting field scale demo

- Several efforts to field test in oilsands:
 - Encana’s Foster Creek VAPEX Pilot
 - Consortium DOVAP
 - SunCor’s ETS
SAGD and beyond

In situ Processes and Energy Efficiency

Energy/bbl

<table>
<thead>
<tr>
<th>SAGD</th>
<th>SAP</th>
<th>VAPEX, IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>Under development</td>
<td></td>
</tr>
</tbody>
</table>
SAGD

It costs to heat

Reduction in Cost of Heat

Use cheaper fuel

- Bitumen/Residue to substitute Gas
 - Nexen/OPTI
- Other talked-about alternatives
 - Coke/Coal/Nuclear

Reduce heat requirement

- Process Improvement
 (Also reduces water requirement)
 - Low Pressure Operation
 - Use of Solvents
 - SAP (SAGD + solvent)
Cheaper Fuel

- Air
- Product oil
- Secondary Upgrading
- Fuel
- Fuel + H₂
- Primary Upgrading
- Residue Gasification
- Thermal Recovery
- Sub-surface

Secondary Upgrading
- Fuel + H₂

Primary Upgrading
- Residue Gasification
- Fuel + H₂

Steam Generation
- Fuel
- Product oil

Thermal Recovery
- Secondary Upgrading
- Primary Upgrading
- Residue Gasification
Cheaper Fuel

Air → Product oil → Primary Upgrading → Residue Combustion → Heat → Steam Generation → Thermal Recovery
Everything in the Reservoir?
Imagine that!
The prized pursuit ..

In Situ Combustion

In theory this is great!
- minimal fuel requirement
- high recoveries
- no reservoir loss of pricier substance
The prized pursuit ..

In Situ Combustion

In theory this is great!
- minimal fuel requirement
- high recoveries
- no reservoir loss of pricier substance

- Petrobank’s Whitesands 3-wells Pilot
- Location: South of Ft. McMurray
- Time-frame: 2005-2008
- Proponents expect a $6/bbl cost reduction

Source: based on Petrobank website information, Fort McMurray Today
To recap ..

- World demand for energy in the near future will grow.
- Although the conventional oil supply is predicted to decrease, non-conventional economic oil sources are ready to step up and fill the gap.
- SAGD is emerging to be the technology of choice for the expanding exploitation of Oilsands of Alberta.
- Energy efficiency and economics of SAGD will significantly improve through steps such as SAP.
- Dramatic improvement in recovery process are expected if VAPEX or In Situ Combustion prove successful.
- We live in exciting times to witness and be a part of a revolution in the Energy Technology!