Microbial Enhanced Oil Recovery: A Sober Look at an Infectious Idea

Steven L. Bryant
Center for Subsurface Modeling
Texas Institute for Computational and Applied Mathematics

The University of Texas at Austin
SPE DISTINGUISHED LECTURER SERIES
is funded principally
through a grant of the

SPE FOUNDATION

The Society gratefully acknowledges
those companies that support the program
by allowing their professionals
to participate as Lecturers.

And special thanks to The American Institute of Mining, Metallurgical,
and Petroleum Engineers (AIME) and individual SPE sections for their contribution to the program.
Acknowledgements

• Society of Petroleum Engineers
• Dr. Thomas Lockhart, EniTecnologie
• Industrial Affiliates of the Center for Subsurface Modeling
 – BP, ChevronTexaco, ExxonMobil, Schlumberger, Halliburton, Intevep/PDVSA, Saudi Aramco, IBM, Texas Water Development Board
The Producer’s Tale, Part 1

• Discovery, appraisal, development…

Life is good!
The Producer’s Tale, Part 2

- Primary recovery … doesn’t

Life is tough.
The Producer’s Tale, Part 3

- Secondary recovery battles physics
 - Poor sweep efficiency
The Producer’s Tale, Part 3

- Secondary recovery battles physics
 - Poor displacement efficiency
The Producer’s Tale (Chorus)

- Primary recovery … doesn’t
- Secondary recovery battles physics … and loses

Oil left in place
The Germ of an Idea

- Intelligent agent for oil recovery
- Featuring DCF^*

Self-directing!

Just add water!

Self-propagating!
The Germ

• Microbe produces recovery-enhancing chemicals

Nutrients → Products → Trapped oil
The Best Part

- The microbes consume residual oil!
 - Find their own carbon source in the reservoir!
 - Create recovery-enhancing chemicals right where needed!
 - **DCF** eliminates logistical hassle!
- The microbes **replicate**!
 - Process is self-sustaining!
The Producer’s Tale

New

EOR performance at waterflood cost

Life is good again!
The Hard Part

- process development, scale-up, field implementation....
Overview

• Scale-up, design issues for microbial enhanced oil recovery
• Derive performance constraints
• Review laboratory, field experience
What is MEOR?

- EOR, not well stimulation
- goal: increased displacement, volumetric efficiencies

![Diagram showing the comparison between the recovery process without stimulation and the enhanced recovery process with well stimulation at t₁. The diagram illustrates the incremental oil produced and the overall cumulative oil produced over time.]
EOR vs. Well Stimulation

• Stimulation treats producers
 – increase near-wellbore permeability
 • acidizing
 • hydraulic fracturing
 – increase near-wellbore oil mobility
 • thermal
 • chemical
 • microbial

• EOR process propagates from injector to producer
Microbial products*

- Acids
- Biomass
- Gases
- Solvents
- Surfactants
- Polymers

What is MEOR?

- MEOR is chemical EOR, but with chemicals generated in situ
What is MEOR?

- MEOR introduces reaction engineering into reservoir engineering

Injected nutrient: N_0
Required product: C_{req}
Stoichiometry: $N \rightarrow \nu_N C$
Kinetics: $dN/dt = -k_1 N$
<table>
<thead>
<tr>
<th>Design Feature</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor type</td>
<td>Fixed, Growing, Mobile</td>
</tr>
<tr>
<td>Carbon source</td>
<td>In situ, Ex situ</td>
</tr>
<tr>
<td>Microbe provenance</td>
<td>Exogenous, Indigenous</td>
</tr>
</tbody>
</table>
MEOR Base Case Implementation

Inoculation

microbe, nutrient injection

Operation

water, nutrient injection

recovery enhancing chemicals

Shut-in

microbe colony

r_m
Reaction/Reservoir Engineering Constraints

- Residence time vs. reaction time
- Consumption of *in situ* carbon source
- Limiting reactant propagation
- *In situ* gas production
- Feasible reactor size
- Mobility control via *in situ* generation of viscosifying agents
Reaction/Reservoir Engineering Constraints

- **Product Concentration**
 - C_{req}
 - Time in Reactor: τ_{rxn}

- **Residence time vs reaction time**

- **Injection well**
 - Q
 - microbes

- **Rate constant, 1/d**
 - $\tau_{\text{rxn}} = \tau_{\text{res}}$

- **Injection rate, bbl/d**

t_{res} is the residence time in the reservoir, and t_{rxn} is the reaction time. The graph shows the relationship between the residence time and the injection rate, highlighting that for certain conditions, the reaction time equals the residence time.
Reaction/Reservoir Engineering Constraints

Consumption of in situ carbon source

- Reservoir volume
- Reactor volume

Graph showing:
- Injection well spacing vs. Slug size (product volume/reservoir volume)
- Lines for $C_{req} = 0.2\%$ and $C_{req} = 1\%$

Legend:
- Dotted line: $C_{req} = 0.2\%$
- Solid line: $C_{req} = 1\%$
Reaction/Reservoir Engineering Constraints

Limiting reactant

- Limiting reactant solubility, ppm
- Radius at which reactant is exhausted, ft

Graph showing the relationship between limiting reactant solubility (ppm) and the radius at which the reactant is exhausted (ft).
Reaction/Reservoir Engineering Constraints

In situ gas production (CO$_2$, CH$_4$)
- reactor volume limits CH$_4$ production

![Graph showing the relationship between methane slug size (PV) and injection well spacing (acres) at different pressures (P = 10 atm, P = 100 atm)]
Reaction/Reservoir Engineering Constraints

In situ gas production (CO₂, CH₄)
- generating CO₂ requires much O₂

![Graph showing oxygen concentration in water (g/m³) vs. water slug size/CO₂ slug size at different pressures (10 atm and 100 atm). The graph indicates that the oxygen concentration decreases with increasing water slug size and CO₂ slug size. Surface water is highlighted with a shaded box.]
Mobility Control for EOR

• Problem
 EOR processes subject to instabilities

• Solution
 mobility control in drive fluids
 • Polymer
 • Foam

• Lesson
 More is better (Lake, 1989)
Reaction/Reservoir Engineering Constraints

Mobility control via in situ generation of viscous agents

- effect of vertical heterogeneity

Viscosity

- Injection

Pressure

- Crossflow tendency

crossflow reduces conversion, efficiency
Reaction/Reservoir Engineering Constraints

Mobility control via in situ generation of viscous agents

- effect of perturbations

Viscosity generation is unstable to perturbations
Review of Laboratory Work

Information required:

- Reaction parameters
 - Rate constants
 - Form of rate expression
 - Stoichiometry (conversion, selectivity)
- Minimum effective concentrations

Such information is largely absent from the literature
Review of Laboratory Work

• Batch vs continuous reactor operation

• Typical recoveries 10%-20% ROIP
 – Low compared to chemical processes (50% ROIP)
 – High recoveries (30%-60%) may have involved other mechanisms

• Oil banks not observed

• Mechanisms very poorly understood
High MEOR recoveries in lab?

- Reported recoveries
 - 35% ROIP (after waterflood) light oil
 - 58% ROIP (after waterflood) heavy oil
- Residual established at 1-2 psi ΔP
- Microbial flooding at 4-5 psi ΔP
- Absolute P increased 60 psi in some expts.
High MEOR recoveries in lab?

- Reported recoveries 30-50% ROIP (after waterflood)
- Measured effluent interfacial tensions
 - 2-3 times lower than water-oil
 - Expect 25% ROIP from typical capillary desaturation curve
- Recovery strongly correlated with permeability reduction
Capillary Desaturation Curve
(Lake, 1989)
Review of Simulator Development

• Small effort in modeling
 – mainly funded by DOE
 – SPE 28903
 – SPE 24202
 – SPE 22845

• Mechanisms poorly understood
 – Modeling/simulation premature
Review of Field Experience (1)

- Few EOR projects
- Many well stimulations

<table>
<thead>
<tr>
<th>Process</th>
<th>Measure of success</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEOR</td>
<td>% ROIP recovered</td>
</tr>
<tr>
<td>Stimulation</td>
<td>Increase in oil rate</td>
</tr>
</tbody>
</table>

ROIP = Remaining Oil In Place
Review of Field Experience (2)

• Three projects aimed at increasing displacement efficiency
 – Two watered-out, low oil rate Oklahoma fields
 – One high water cut, low oil rate Texas field
Review of Field Experience (2)

- Watered-out, low oil rate Oklahoma fields
 - Incremental recovery <1% ROIP in 2 years
 - Oil rates increased steadily four months before the trial
 - Residence time vs reaction time criterion not satisfied
 - Poor volumetric efficiency
 - Probable thief zone (rapid tracer breakthrough)
 - No polymer injection or biopolymer production
 - Microbe efficacy unknown (poor lab results as per above)
Review of Field Experience (3)

• Three projects aimed at increasing **volumetric** efficiency (SPE 75328, 59306, 35448, 27827)
 – Mixed results
 • Positive result (*SPERE*E Feb. 2002)
 – Uses native microbes
 – Extrapolates to ~5% ROIP ultimately recovered, comparable to polymer floods
 – Simpler mechanism
 – Issues
 • limiting reactant analysis
 • maintaining long-term injectivity

Technical basis: growing biomass reduces permeability, redirects injected water
Review of Field Experience (4)

• Well stimulation with microbes
 – Popular in some regions
 – Cheap
 – Mixed results
 – Inconclusive evidence for mechanism(s)
 • Some involve microbe/oil interaction
 – Viscosity reduction
 • MEOR analytical tools/engineering constraints applicable
 – Residence time
 – Limiting reactant
Microbial Well Stimulation

Inoculation

microbe, nutrient injection

Shut-in

microbe colony

Operation

Oil, water production

Viscosity reduction
Reaction/Production Engineering Constraints

- **Nutrient supply?**

- Residence time fixes reaction time
- Reaction time fixes viscosity reduction
- Viscosity reduction determines productivity increase
Conclusions (1)

- Key potential advantage of MEOR
 - ability to use in situ carbon source

Just add water!
Conclusions (2)

• Key disadvantages of MEOR
 – Likely microbial performance constraints
 – Poor lab, field performance relative to peers (other chemical EOR)
Conclusions (3)

• Preferred MEOR option
 – Profile modification via biomass
 – Simpler, esp. with indigenous microbes
 – Compared to waterflood
 • Small incremental cost
 • Marginal increase in difficulty
Conclusions (4)

- Reservoir/reaction engineering perspective needed
 - Missing in past MEOR research
 - Inadequate data for quantifying performance constraints
- Similar perspective needed for microbial well stimulation