SPE DISTINGUISHED LECTURER SERIES

is funded principally
through a grant of the

SPE FOUNDATION

The Society gratefully acknowledges
those companies that support the program
by allowing their professionals
to participate as Lecturers.

And special thanks to The American Institute of Mining, Metallurgical,
and Petroleum Engineers (AIME) for their contribution to the program.
LNG – What’s Happening – and Why!

John Morgan

John M. Campbell & Company
$5 Billion Entry Fee
WHAT IS LNG

LPG – Liquid Petroleum Gas
NGL – Natural Gas Liquids
LNG – Liquid Natural Gas
Example LNG Properties
-162°C [-235°F] at atmospheric pressure

<table>
<thead>
<tr>
<th></th>
<th>Rich</th>
<th>Lean</th>
</tr>
</thead>
<tbody>
<tr>
<td>nitrogen</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>methane</td>
<td>88.7</td>
<td>97.5</td>
</tr>
<tr>
<td>ethane</td>
<td>8.0</td>
<td>1.5</td>
</tr>
<tr>
<td>propane</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>butanes</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>approx. kg/m³</td>
<td>465</td>
<td>435</td>
</tr>
<tr>
<td>CV (higher) MJ/m³</td>
<td>42</td>
<td>38.5</td>
</tr>
</tbody>
</table>
An LNG Export Terminal with Multiple Expansions - Bontang, Indonesia
The Basic LNG Chain

Gas Production

LNG Production

Shipping

LNG Reception

Gas Utilization
Natural Gas Transportation Options

- Pipeline
- LNG
- Gas-to-liquids
- Electricity
- Uneconomic

Distance to market, km

MMscfd
Nominal Gas Transportation Efficiency

Ref. OG&J (May 15, 2000), p.64
Historical Development of LNG Trade – Last 25 Years

- Projects grow from less than 1 mta to 4-6 mta
- New supplies to Japan,
 first imports to Korea, 1987,
 and Taiwan, 1990
- Late 1990s – present
 - Slower growth in Asian LNG demand – economic upsets
 - Growth in LNG demand in Europe, USA and Caribbean
 - New supply projects in Atlantic Basin and Middle East
 - Today’s LNG trade
LNG Industry Growth

Source: CERA, CEDIGAZ
Demand is Met from Diverse Sources of Supply

© 2005 Source NPC
LNG Imports Are Needed, but Face Obstacles
The Basic LNG Chain

Gas Production

LNG Production

Shipping

LNG Reception

Gas Utilization
The Contract Chain

1. Exploration licenses, production-sharing contracts
2. Gas sales to LNG Producer
3. LNG production joint venture agreement
4. Condensate/LPG production and sale
5. Government and local authority agreements
6. LNG sale and purchase agreement between LNG producer and LNG buyers
Gas Production Platform
North Rankin A
North-West Shelf Project, Australia
The Basic LNG Chain

1. Gas Production
2. LNG Production
3. Shipping
4. LNG Reception
5. Gas Utilization
Contaminants

What’s in gas (besides light hydrocarbons)?

H₂O CO₂ H₂S S He N₂ Cl Hg As

Waxes Asphaltenes etc.

Sand Dinosaur Dust

Lubricants Corrosion Inhibitors

Mystery Stuff, etc.
Mixed Refrigerant LNG Process
Overview of LNG Production Facilities Technologies

• Established Technologies
 – ConocoPhillips (Optimized Cascade)
 – APCI (Propane Precooled)

• New Process Technologies
 – APCI (AP-X)
 – Linde (MFC)
 – Shell (PMR)
 – IFP (Liquefin)
ConocoPhillips Optimized LNG Process
Overview of LNG Production Facilities Trends

• Larger facilities
 – Bigger Trains
 – Bigger Turbines

• Reduce Environmental Impact
 – \(\text{CO}_2 \)
 • Produced with gas
 • Developed by turbines
 – \(\text{NO}_x \)
 – Marine Environment
Typical Project Schedule

Greenfield LNG Export Project

<table>
<thead>
<tr>
<th>Year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream</td>
<td>study</td>
<td>drilling and appraisal</td>
<td>design</td>
<td>construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminal Site</td>
<td>selection</td>
<td>acquisition, approvals</td>
<td>prepn.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNG Plant</td>
<td>study</td>
<td>concept design</td>
<td>FEED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipping</td>
<td>study</td>
<td>shipping arrangements</td>
<td>ship building</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Structure & Evaluation</td>
<td>study</td>
<td>negotiations -j.v.</td>
<td>evaluation</td>
<td>first LNG exports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Markets</td>
<td>artanalysis</td>
<td>marketing, sales agreements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financing</td>
<td>advice and analysis</td>
<td>securing financing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Basic LNG Chain

Gas Production

LNG Production

Shipping

LNG Reception

Gas Utilization
1959 – The Methane Pioneer
Partial Loading of LNG Cargoes

Photo Courtesy of ABS
The Basic LNG Chain

Gas Production → LNG Production → Shipping → LNG Reception → Gas Utilization
Reduce Environmental Impact

• Reduce CO2
 – Inject Produced CO2
 – Install most efficient drivers
 • Cogeneration
 • Larger Turbines
 • Electric Motor Drivers

• Reduce NOx
 – Install “Clean-burn” technology

• Effect on Marine Environment
 – Use of air coolers
Negishi Terminal, Japan: Single Containment Tanks (background) Inground Tanks (foreground)
Costs in an LNG Project

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Gathering</td>
<td>US$ 1 – 1.5 billion</td>
</tr>
<tr>
<td>Liquefaction (1 train)</td>
<td>US$ 1 – 1.5 billion</td>
</tr>
<tr>
<td>Ships 5 @ $180 m</td>
<td>US$ 0.9 billion</td>
</tr>
<tr>
<td>Regasification</td>
<td>US$ 0.5 billion</td>
</tr>
<tr>
<td>TOTAL</td>
<td>US$ 3.4 – 4.4 billion</td>
</tr>
</tbody>
</table>

Could easily reach $5,000,000,000
The Basic LNG Chain

- Gas Production
- LNG Production
- Shipping
- LNG Reception
- Gas Utilization
Seasonal Demand Pattern
Europe & North America

Winter

Maximum Capacity

Annual Average

Take or Pay Quantity

Actual Demand/Take

Summer

January

December
Gas Markets

- **Residential & Commercial**
 - Heating demand highly seasonal (low load factor)
 - No fuel switching capabilities

- **Industrial**
 - Fuel for factories, chemical plants, steel mills, etc.
 - Power generation for factories, chemical plants, steel mills, etc.
 - Chemical feedstock – ammonia, methanol, GTL
 - High load factor
 - Fuel switching capability
Gas Markets

- Power Generation
 - Combined cycle most popular
 - GT + waste heat boiler Eff.~55%
 - Low CO$_2$ emissions
 - 7 – 8 tonnes/MW compared to
 - 25 – 27 tonnes/MW for coal
 - Higher load factor than residential & commercial
 - Quick response to demand swings
 - Summer demand higher than winter (A/C)
 - Fuel switching capability
The 9EC's 18-stage compressor was derived from the MS9001E through a combination of scaling and limited radial extension of the outer annulus.
GE GAS TURBINES
H-Technology

400-480 MW combined cycle output

Firing at 2600°F, 1430°C

23:1 compressor, 18 stages

4 stage turbine

60% combined cycle efficiency
Example Heating Values

- Japan – Power Plant
- USA - Florida
- UK

Adapted from: Bramoulle, Morin and Capelle, “LNG Quality and Market Flexibility Challenges and Solutions”, LNG 14, Doha, Qatar 2004
Commercial Trends

- Continued downward pressure on LNG costs
- More competition, more risk-taking. Global supply strategies
- Building ships/terminals in advance of firm supply/sales contracts. Merchant facilities
- Increasing power generation market
- Regional market trends
 - Europe. Open access. Market related prices. LNG and pipeline supplies.
 - Central/South America.
- Market niches: small-scale supply projects, reception, satellites.
LNG – What’s Happening – and Why!
UK Gas Supply and Demand

Note: supply represents UKCS producing, UKCS proposed and existing UK imports

Adapted from: David Haynes & Paul Martin
LNG is Coming Home
GASTECH 2005, Bilbao, Spain
Some of Today’s Challenges in LNG…..Many

- Permits for US Imports
- Crews for LNG Carriers
- LNG quality variations
- Security
- Materials and Staffing
LNG – What’s Happening – and Why!

John Morgan

John M. Campbell & Company