SPE DISTINGUISHED LECTURER SERIES

is funded principally
through a grant of the

SPE FOUNDATION

The Society gratefully acknowledges
those companies that support the program
by allowing their professionals
to participate as Lecturers.

And special thanks to The American Institute of Mining, Metallurgical,
and Petroleum Engineers (AIME) for their contribution to the program.
Applied Reservoir Management: Examples of Best Practices

John Nnaemeka Ezekwe, PhD
Devon Energy Corporation
Presentation Outline

- Reservoir Management Principles
- Review Reservoir Management Principles
- 26R Reservoir Management Strategy
- Slick & Luling Reservoirs in Texas
- Mismanaged Reservoirs
 - MBB/W31S Versus North Coles Levee
 - Eugene Island Block 330, Gulf of Mexico
- Closing Remarks
Reservoir Management Principles

- Conservation of reservoir energy
- Early implementation of simple strategies
- Sustained and systematic data collection
- Continuous application of improved recovery technologies
- Long term retention of staff in multi-disciplinary teams

NEW TECH

APPLY SIMPLE STRATEGIES

CONSERVE RESERVOIR ENERGY

COLLECT DATA

STAFF
Conservation of Reservoir Energy

- Avoid these practices:
 - Gas cap production
 - Excessive drawdown
 - Commingling large, separate reservoirs
 - Close well spacing

- Balance energy conservation and maximum economic recovery
Early Implementation of Simple Strategies

- Simple strategies conserve reservoir energy at minimum cost

- Examples of simple strategies
 - Pressure maintenance
 - Zone isolation
 - Controlled draw-down
 - Down-hole pressure gauges
Systematic and Sustained Collection of Data

- Data to collect
 - Geologic/seismic
 - Pressure data
 - Rock/fluid data
 - Well data

- Focus on areas of need
- Weigh costs vs benefits
Well-managed reservoirs benefit from improved technologies.

Improved recovery technologies are:
- New drilling techniques
 - Multi-lateral wells
 - Geo-steering of wells
- New completion techniques
 - Smart wells
- New production operations
 - New/Improved Lift Systems
- New recovery methods
 - Chemical/Polymer Flooding
Long Term Retention of Multi-Disciplinary Teams

- Reservoir management teams composed of multi-disciplinary staff
- Team members kept together as long as possible
Five Reservoir Management Principles

CONSERVE RESERVOIR ENERGY

APPLY SIMPLE STRATEGIES

COLLECT DATA

NEW TECH

STAFF
Summary- 26R Reservoir

- Maximum net pay is 1800 feet
- OOIP is 423 MMBO
- Reservoir at bubble Point pressure
- Gravity Drainage- Main mechanism
26R Reservoir

26R Sand/NA Shale Stratigraphy

1. A-C MEGAUNIT
2. C-F MEGAUNIT
3. F-K MEGAUNIT
4. K-N MEGAUNIT
5. N-P MEGAUNIT

Shale

Monterey Formation

TRANSITIONAL LITHOLOGY

0' 1000'

-6000' VSS
26R Management Strategy

- Maximize Gas Recovery, 1998-2005

- Maximize Oil Recovery
 - Gas-oil ratio controls
 - Pressure Maintenance
 - Data Collection
 - Use of Horizontal Wells

- Goal: Maximize economic recovery
Conservation of Reservoir Energy: Gas-oil Ratio Controls

- HGOR wells shut-in to conserve reservoir energy
Early Use of Simple Strategies: Pressure Maintenance

- Crestal gas injection started 3 months from open-up in October 1976

Structure map of 26R Reservoir showing gas injectors
Systematic Collection of Data

- Pressure Data
 - Key wells every month
 - Field-wide twice a year

- Core, Log and RFT data from new wells

- Improved geologic/simulation models based on new data
26R Model Summary

- Geologic Model: 76 X 32 X 500
 - 1.22 million cells

- Geologic model built with geostatistics
 - Used SGS for property modeling

- Reservoir model: 76 X 32 X 56
 - Upscaled to 136,000 cells
 - Simulated with Eclipse simulator

- Check SPE Paper 46231 (1998) for details
Improved Recovery Technologies: Horizontal Wells

- First horizontal (HZ) well drilled in 1988
- 22 HZ wells drilled by 1996
- In 1998, HZ wells produced 70% of oil with one-third GOR of vertical wells
Performance of HZ Vs Vertical Wells
Gas-Oil Ratios in 26R Reservoir
Improved Recovery Technologies: Horizontal Wells

Horizontal (HZ) Well Locations in 26R Reservoir
Maximize Gas Recovery
- No Gas-oil ratio controls
- End Pressure Maintenance

Goal- Maximize economic recovery
Factors behind strategy change

- High market value for gas
- Reservoir was near depletion
- NPV of gas reserves 5 times greater than NPV of remaining oil reserves
Example of Sustained & Systematic Data Collection

- Slick & Luling Reservoirs in Texas, U.S.A.
- Collected SBHP data 2 times per year over forty years
- Historical pressure and production data documented in well files over 40 years
SBHP- Well Ruhman B-1
Slick Reservoir

![Graph showing SBHP (PSIG) from 1948 to 1984]

SBHP (PSIG)

SBHP (PSIG) decreases over time from 3000 to 0.
Mismanaged Reservoirs

- Numerous examples exist in our industry
- Reservoirs in this category include
 - Absence of clearly stated or defined strategies
 - Management strategies not based on data
 - Low pressured reservoirs with depleted gas caps
 - Poorly planned pressure maintenance programs
 - Extended excessive production to meet targets
MBB/W31S Vs North Coles Levee
MBB/W31S Vs North Coles Levee

<table>
<thead>
<tr>
<th>Properties</th>
<th>MBB/W31S</th>
<th>North Coles Levee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Press, psi</td>
<td>3150</td>
<td>3960</td>
</tr>
<tr>
<td>Avg Porosity, %</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Avg Wat Sat, %</td>
<td>33</td>
<td>43</td>
</tr>
<tr>
<td>Perm range, mD</td>
<td>0-4570</td>
<td>0-7500</td>
</tr>
<tr>
<td>Bubble Pt, psi</td>
<td>2950</td>
<td>3260</td>
</tr>
<tr>
<td>GOR, scf/bbl</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Oil Gravity, API</td>
<td>33.5</td>
<td>36.1</td>
</tr>
<tr>
<td>Oil Viscosity, cp</td>
<td>0.4</td>
<td>0.45</td>
</tr>
</tbody>
</table>
MBB/W31S Vs North Coles Levee

- Same geologic age - Miocene era
- Turbidite sand deposits
- Identical type logs
- Similar reservoir fluids
Both reservoirs had:
- Early production by depletion drive
- Gas injection for pressure maintenance
- Waterfloods installed in both reservoirs

Major difference:
- Gas cap in North Coles Levee blown down **BEFORE** waterflood was installed

Main consequence:
- Injected water **FLOODED** the gas cap in North Coles Levee
MBB/W31S Reservoirs
Peripheral Waterflood Project
MBB/W31S Vs North Coles Levee
Current Status

● North Coles Levee is Shut-in
 – SPE 9934 & SPE 15499

● Expansion of Pattern waterflood
 in MBB/W31S Reservoirs
 – SPE 68879 & SPE 76723
Eugene Island Block 330 Reservoir - Gulf of Mexico: Another Example

- Production began in 1973
- Rapid pressure decline from 1973 to 1980
- Gas injection for pressure maintenance began in 1980
Gulf of Mexico: EI 330
Reservoir Pressures Vs Time

Reservoir Pressure (psia)

Gas Injection Period

Feb-73 Feb-74 Feb-75 Feb-76
Feb-77 Feb-78 Feb-79 Feb-80
Feb-81 Feb-82 Feb-83 Feb-84
Feb-85 Feb-86 Feb-87 Feb-88
Feb-89 Feb-90 Feb-91 Feb-92
Feb-93 Feb-94 Feb-95 Feb-96
Feb-97 Feb-98

Feb-99
Gas Injection Well
Vol. Inj. = 18 BCF
From 1980 to 1990
Gulf of Mexico: El 330 Reservoir

18 BCF of Gas leaked Across the fault into Gas cap
EI 330: Pressure Maintenance Failure

- **Reasons:**
 1. Poor Geologic work
 2. Poor monitoring of reservoir pressures

- **Costs of Failure:**
 1. Injection facilities
 2. Operating costs over 10 years
 3. Lost value of 18 BCF of injected gas
Conclusions
Five Reservoir Management Principles

- Staff
- New Tech
- Collect Data
- Apply Simple Strategies
- Conserve Reservoir Energy
Benefits of SPE Membership

- Opportunities to participate in local Section activities
- Access to industry resources
- Leadership development and volunteer opportunities
- Career-building opportunities
Benefits of SPE Membership

- Monthly *Journal of Petroleum Technology* (JPT)
- Access to 25+ free Technical Interest Groups (TIGs)
- Member discounts on technical papers, journals and conference registrations
- Networking opportunities within the SPE community