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Foreword 
 
Although it has been more than 150 years since Colonel Drake successfully drilled and completed 
the first productive and self-sustaining oil well in Pennsylvania in 1859, the reservoir technical 
discipline has remained very conservative and been resistant to change. It generally only does so 
when forced to by external events—such as when taxation practices led to the development of 
decline curve analyses in the 1910s and 1920s, regulatory proration practices led to the 
development of deliverability testing (and inflow performance relationships) in the 1930s, and the 
unitization practices of the 1950s led to the development of reservoir modeling and simulation. 
Despite the more-recent claims of integrated reservoir studies and although the circular references 
in most workflows imply an iterative model-building approach, these processes are typically a 
mere fine-tuning of the quality and quantity of a select set of model parameters. Seldom does a 
workflow lead to a new perception of a reservoir.  
 
Technical and operational improvements in the past several decades have significantly increased 
the efficiency of reservoir management. However, there have been no major breakthroughs leading 
to substantial improvements in recovery factors, which remain below 30% (except in very-high-
quality reservoirs) and drop to a mere 5 to 8% in unconventional (or low-quality) reservoirs. The 
contribution of 375 enhanced oil recovery (EOR) projects worldwide to global oil production was 
only approximately 2% in 2017 and is expected to rise to 4% by 2040 (McGlade et al. 2018). One 
of the underlying reasons for this asymmetry between the interest in EOR and its actual impact is 
that EOR ideas have not changed much, categorically, since the 1970s, despite the increased 
complexity of target formations, the availability of more-effective EOR agents, and significant 
technological improvements for implementation.  
 
This lack of progress has resulted from many factors, including the interest in shorter-term project 
economics, the scarcity of technical and human resources, a lack of motivation, and an insufficient 
knowledge base from which to direct improvements in reservoir technology. New developments 
such as data analytics, artificial intelligence, and machine learning and the availability of advanced 
computing and software capabilities have provided and will continue to provide better tools to 
develop new ideas and technologies. However, there are also concerns that the “big crew change” 
will erode the foundational knowledge and rich human experience that have been built over the 
past 150 years. A related problem stems from the mesmerizing capabilities of computerized tools 
(software, simulators, artificial intelligence) and the irresistible convenience of automated analysis 
packages, which require minimal human intervention. In a discipline where the nonuniqueness of 
solutions is inherent, ensuring the physical consistency of the interpretation is the only defense 
against committing gross errors. This requires that the user or interpreter be proficient in the 
physics of reservoir phenomena and have an ability to incorporate multidisciplinary data into the 
interpretation process. Unfortunately, the computerized analysis tools available today are 
sometimes used with absolute trust and without sufficient experience and understanding of the 
background. In most of these cases, the tools and the theory are blamed for any failures. 
 
Finally, many theoretical and technological innovations that were developed outside of petroleum 
science and engineering in the past several decades have not been adequately explored or adopted. 
Despite easier access to broader knowledge, our interest and focus appear to have narrowed to the 
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discipline-specific knowledge, practice, and experience documented in petroleum science and 
engineering publications. Moreover, a review of the technical papers available in the OnePetro 
library and the SPE Forum Series topics, much less those of the technical conferences and 
workshops, reveals the dreaded reality: We have been entertaining the same concepts over and 
over instead of introducing new ideas, or discussing how existing tools can be tweaked to perform 
new tasks instead of developing new technologies for our changing needs.  
 
To tackle these current and future challenges, the SPE Reservoir Advisory Committee (RAC) 
began an initiative in May 2019 to develop a comprehensive strategic plan to review, revise, and 
update the reservoir technical discipline, with the following specific objectives: 

• Initiate a critical review and discussion to identify old, obsolete, inadequate, and/or 
irrelevant technologies 

• Encourage the development of candidate concepts to replace old perceptions and 
technologies  

• Propose, discuss, establish, and disseminate new concepts and technologies  
• Educate and train the workforce to manage the transformation of industry practices 
 

For this initiative, the RAC—which comprises 56 subject-matter experts—was organized into 
study groups to focus on the following three categories and their associated subcategories:  

• Reservoir characterization 
 Geology, geophysics, petrophysics, rock physics, and geomechanics 
 Core analysis 
 Pressure transient analysis 
 Rate transient analysis 

• Reservoir engineering 
 Fluid flow in porous media 
 Phase behavior and PVT analysis 
 Molecular- and pore-scale modeling 
 Field-scale numerical reservoir simulation 
 Enhanced oil recovery 
 Well performance 

• Reservoir management 
 Data analytics, artificial intelligence, and machine learning  
 Field-scale projects  
 Reserves 
 Project economics 

 
The resulting green paper, which is presented here, is not envisioned as an authoritative document 
but rather a candid, as well as provocative, account of the state of the reservoir discipline. (For the 
purpose of this work, the term “green paper” describes a tentative report/consultation document 
with technical proposals prepared for discussion.) As a general disclaimer, this work is not 
intended to be an SPE position statement, nor is it an SPE board report. The opinions presented in 
this document belong solely to the contributing authors, not to their affiliated organizations. 
Moreover, consensus on opinions was not sought among the contributors beyond the requirement 
of reasonable factual support. Rather, it is an attempt by a group of subject matter experts to inspire 
discussion regarding the reservoir technologies that will be required to meet the challenges of the 
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21st century. Any appearance of promoting a particular technology, concept, model, or approach 
is completely unintentional. Contributors selected topics based on their expertise on and/or 
familiarity with those topics; the exclusion of any topic might be merely an omission. To adhere 
to our objective to generate discussion, rather than to solve problems, no effort was made to be 
detailed or comprehensive. References have been included when the authors believed it was 
relevant to give credit to the original source of a specific concept or technology, but we tried to 
limit references because we do not wish to guide the reader in a specific direction. 
 
Finally, my acknowledgments are due to the key participants of this project. The support and 
contributions of my Reservoir Technical Director predecessors, Olivier Houze (2012–2015) and 
Tom Blasingame (2015–2018), have been greatly appreciated. They provided much-needed 
encouragement and excellent editorial contributions throughout the process of bringing this 
document together. I was fortunate to work with a distinguished group of subject-matter experts, 
the members of the 2018–2021 SPE RAC, on the technical content of the green paper. I am 
indebted to their dedication to support SPE’s mission “to collect, disseminate, and exchange 
technical knowledge concerning the exploration, development, and production of oil and gas 
resources” and vision to “advance the oil and gas community’s ability to meet the world’s energy 
demands in a safe, environmentally responsible, and sustainable manner” in the 21st century. 
Melinda Mahaffey Icden has been an invaluable asset during the final editing of this document, 
which was written by a large and eclectic group of authors with diverse backgrounds, to ensure 
format consistency and enhance content clarity and readability. And, of course, I am thankful for 
the resources provided by SPE to bring this project to fruition.  
 

Erdal Ozkan 
SPE Reservoir Technical Director (2018–2021) 

Colorado School of Mines 
September 2021 
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Reservoir Characterization 
 

Introduction  
From an empiricist perspective, reservoir characterization is the practice of defining reservoir 
qualities by means of the measurement or appraisal of a selected set of tangible quality identifiers. 
From a utilitarian perspective, however, reservoir characterization serves to describe the flow 
domain and quantify the constitutive relations of flow; that is, appropriate values are assigned to 
the characteristic parameters, with the objectives of modeling flow and predicting recovery. In this 
utilitarian view, the characteristics of the reservoir to be defined, qualified, and quantified are 
dictated by the perceived reservoir flow process and the selected phenomenological descriptions 
of transport. In turn, characterization, combined with knowledge of the fundamental laws of 
physics, shapes our assumptions of the reservoir flow process. Thus, the evolution and the current 
status of reservoir characterization are not independent of the evolution of our perceptions of the 
reservoir flow processes and the current needs of our reservoir engineering and management 
practices. Moreover, the information used for reservoir characterization comes from diverse 
sources—such as seismic, well logs, cuttings, cores, pressure and rate transient tests, and 
production performance—and integrates specialties embedded in geology, geophysics, and 
engineering. Therefore, the decision to devote a separate section to reservoir characterization that 
covers geosciences (geology, geophysics, petrophysics, and geomechanics), core analysis, 
pressure transient analysis, and rate transient analysis was made solely for convenience in terms 
of organizing, documenting, and referencing the discussions in this green paper.  
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Geology, Geophysics, Petrophysics, Rock Physics,  
and Geomechanics 
 
Contributors  

• Ridvan Akkurt (Schlumberger) 
• Vincenzo Guerriero (Università Degli Studi di Napoli Federico II) 
• Richard Pemper (Weatherford) 
• Stephanie Perry (GeoMark Research) 
• Mark Proett (independent consultant) 
• Andrew Royle (Chevron) 
• Steve Sonnenberg (Colorado School of Mines) 
• Carlos Torres-Verdin (The University of Texas at Austin) 
• Ali Tura (Colorado School of Mines) 

 
Introduction 
Most subsurface disciplines are based on methods that were initially derived from investigated 
conventional rocks (greater than 15% total porosity and 1-md permeability). The industry then 
refocused its activities on coalbed methane, then on shale gas, and then recently on tight liquids in 
siltstones, shales, and carbonates (Passey et al. 2010). Currently, the industry is tackling tight oil 
in all rock types with equations, concepts, and principles that are known to be unreliable for 
measuring and quantifying the storage and production behavior of these defined unconventional 
reservoirs (Dean and Stark 1920; API RP40 1998).  
 
Geological, petrophysical (including geomechanics), geophysical, and geochemical disciplines all 
help to focus and support in-place to producible hydrocarbon assessments and quantification, 
reservoir- to production-scale engineering, and in general upstream, midstream, and downstream 
efforts in the oil and gas industry. Empirical solutions have been proven to work over a wide range 
of reservoir rock types and stratigraphic conditions (Clavier et al. 1984; Comisky et al. 2007). 
However, they require modifications beyond what they were intended for, which gives rise to 
myriad solutions that can turn petrophysics and geophysics into an art more than a science. A 
reliance on empirical solutions that work in one reservoir but are difficult to extrapolate could be 
minimized by focusing future work on fundamental research. It would be beneficial to go back to 
the drawing board, bringing earth scientists, physicists, chemists, and mathematicians together to 
look at rocks and fluids using modern laboratory and computational methods. In the age of parallel 
computing, cloud solutions, and sophisticated laboratory measurements, this should be much 
easier to do today than 10 years ago.    

 
One issue is financial support, combined with a focus on a short-term, rather than a long-term, 
vision. A significant number of oil companies have eliminated fundamental research. They now 
depend on the service companies to improve the means of production through applied research 
techniques and methods. Among such improvements are optimized drilling methodologies and 
advanced measurement while drilling and logging while drilling, as well as openhole, casedhole, 
and production logging wireline/cable measurements. Service companies often partner with 
universities in this process, and while a significant amount of fundamental work is being performed 
at universities, academically driven foundational research work tends to receive less industry 
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support. The affiliated professional societies [such as SPE, 
the Society of Petrophysicists and Well Log Analysts, the 
American Association of Petroleum Geologists, and the 
Society of Exploration Geophysicists] could lead by 
coordinating support for programs and workshops 
considered to be industry-advancing studies. 
 
History, Background, and Original Concepts  
Reservoir models are built on the basis of reservoir 
characterization, which includes the geological definition 
and boundaries, gross/net isopach maps, and the distribution 
of petrophysical properties such as porosity, permeability, 
relative permeability, and fluid saturations. Lately, 
unconventional reservoir development has also emphasized 
sweet-spot delineation—which involves mapping 
temperature, pressure, and fluid distributions—and the 
definition of aspects such as structure, fractures, 
stratigraphy, and facies. 

 
The characterization of conventional reservoirs has been 
ongoing for more than 50 years, but the characterization of 
unconventional reservoirs can still be considered to be in its 
infancy. Knowledge of reservoirs (carbonate, clastic, and 
shale) continues to improve with time and the evaluation of 
techniques. Current technology and practice enable the 
qualitative and quantitative characterization of depositional 
environments, facies, flow units, geomechanics, total 
organic carbon (TOC) distribution and type, and 
porosity/permeability types to aid reservoir/resource 
exploration and development. Fracture network modeling 
has emerged as an area of interest with the recognition of 
fractures as key petrophysical features defining flow and the 
recovery characteristics of reservoirs. The description and 
characterization of major fracture sets are frequently based 
on fractal models and/or on geostatistical criteria. 

 
Historically, the primary role of petrophysics was to 
recommend data-collection programs and quantify 
hydrocarbons-in-place as indicated by openhole wireline 
tools. Over the years, its role has expanded, as has that of 
other disciplines (geophysics, geology/stratigraphy, 
geochemistry, basin modeling), to encompass many subjects, 
with countless tools used to address these subjects and move 
from qualitative to quantitative solutions or evaluations (Capsan and Sanchez-Ramirez 2016). The 
role had been seemingly siloed from integration with other disciplines as most petrophysicists were 
focused on the active operational components of logging a given vertically oriented wellbore and the 

TAKEAWAYS 

Reservoir models are built on the 
basis of reservoir characterization. 
More recently, unconventional 
reservoir development has 
emphasized sweet-spot delineation 
and the definition of aspects such as 
structure, fractures, stratigraphy, and 
facies. 
 
Conventional reservoirs have been 
characterized for more than  
50 years, but the characterization  
of unconventional reservoirs is  
still in its infancy. Knowledge of 
reservoirs continues to improve with 
time and the evaluation of 
techniques. 
 
The role of petrophysics has 
expanded, with countless tools 
available to move from qualitative to 
quantitative solutions or evaluations. 
The industry has started to move 
beyond initial prototypes and 
laboratory instrumentation designs by 
advancing newer techniques. 
 
The perception of shale has changed, 
and its dynamic complexity is now 
recognized. 
 
It became evident that new tools and 
innovative development were needed 
to better support the geological, 
geophysical, and petrophysical 
understandings and assessments of 
unconventional formations. 
 
 



 

 
 

7 

quality control and interpretation of the acquired data (Archie 1942; Waxman and Smits 1968; 
Juhasz 1981). Now, data are routinely acquired in vertical, deviated, and horizontal wellbores 
(Elkington et al. 2002; Market et al. 2016). Basic static laboratory measurements were used to define 
storage and flow as well as to confirm hydrocarbons-in-place using the Dean-Stark method. 
Integration with geochemical measurements such as TOC and programmed pyrolysis was still being 
developed and standardized into the late 1990s and early 2000s (Jarvie 1991; Behar et al. 2001; 
Carvajal-Ortiz and Gentzis 2015). The industry has now started to move beyond those initial 
prototypes and laboratory instrumentation designs by advancing techniques such as standard 
crushed-rock analysis and retort methodology, permeability techniques, and geochemical 
modifications and focusing on rock and fluid quantification (Maende et al. 2017; Durand et al. 2019). 

 
Geologists dominantly relied on basic openhole wireline suites and seismic volumes for sequence 
stratigraphic interpretation and the development of depositional frameworks (Bohacs and Lazar 
2010; Bohacs et al. 2011, 2014). Basic properties were mapped in 1D and 2D for sweet-spot 
identification by overlaying key geological properties for potential hydrocarbon accumulations. 
Also critical were a structural understanding of trap and seal analysis focused on conventional 
reservoir connectivity and volumetric assessment of the “size of the prize.” The general 
understanding of the dynamic complexity in shale—or, more specifically, mudstone deposition—
left a lot to be desired. The assumed model was one of consistently homogeneous drapes with no 
geological architecture or significant variation in organic matter type or presence. The primary 
concern was that there was shale somewhere and it was generating hydrocarbons, and within the 
basin it generated the top seal to conventional systems. Now, the conventional reservoir seal is the 
new reservoir and has important variations and changes that lead to varying horizontal drilling 
performance and production.  

 
The understanding of carbonates and tight sands was also overly simplistic, where widely applied 
global models that assumed one tight carbonate was the same as any other were used for the sake 
of consistency despite subsurface variability. However, through whole-core acquisition and 
outcrop studies over the years, it has become evident that this might not be the case. Using the 
basic available tool suite(s) for all disciplines resulted in scientific and discipline-specific 
limitations. Techniques and methods needed to be updated to be applicable to unconventional 
formations and principles for rock and fluid interactions (Comisky et al. 2011; Handwerger et al. 
2011). New tools and innovative development were needed to better support the geological, 
geophysical, and petrophysical understandings and assessments of unconventional formations. 
 
Current Status 
The current technologies for the measurement and characterization of petroleum fluids, the 
procedures to delineate depositional systems, and the methods to measure porosity and 
permeability are still acceptable. In fracture analysis and structural characterization, however, 
many misperceptions and obsolete approaches can be found. In geophysics, the main challenge 
has been seismic amplitude preservation. As we deal with more-complex structures, building 
velocity models and imaging become more pressing. Many challenges also exist for complex near-
surface conditions. For unconventional reservoirs, for example, subtle reservoir impedance 
changes can still present difficulties for quantitative inversion. 
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Hydrocarbon-system applied understandings no longer 
consider the single-layer, constant subsurface property 
application of unconventional rock types but rather the 
complex, interbedded nature of these unconventional 
formations and variability in the rock and fluid 
interactions over time. Rather than rely on assumptions, 
time/temperature constraints are now focused on data 
collection using developed techniques specifically 
applicable to unconventional rocks spanning various 
play types. The focus of the geology, geochemistry, and 
petrophysics disciplines has shifted toward defining 
kerogen type, TOC enrichment or leanness, thermal 
maturity vs. time, and the distribution of organic 
matter, which influence qualitative and quantitative 
efforts. The geological characterization of sequence 
stratigraphic frameworks has been rejuvenated because 
of the complexity observed in shales (Passey et al. 
2010). No longer are mudstones considered to be a 
homogeneous shale drape at the toe of a turbiditic 
sequence. Rather, the best practice is to pay close 
attention to the depositional environment of the lean or 
enriched organic matter within the fine-grained rock 
column (Bohacs et al. 2011).  

 
In addition, comparing and contrasting elemental 
compositional information to and with 2D/3D maps 
and predicting where upwelling environments might 
exist or if a basin ever went anoxic or dysoxic are 
critical details now able to be interpreted from data 
generated using laboratory instruments and applied 
discipline methodology, unraveling the unconventional 
play types. Seismic volumes are being used to 
understand and constrain the rate of the depositional 
slope and how regionally extensive the maximum 
floods vs. boundary sequences are and how they 
influence the source-rock distribution, enrichment, and 
contribution to the overall hydrocarbon-filled rock 
volume and its ability to flow at producible rates. 
Mineralogy is key for the geologist and petrophysicist 
to understand the depositional environment using 
mineralogical indicators, such as pyrite and siderite 
compositions. This understanding helps them with 
derived property predictions on 1D well logs in a basin-
scale to per-wellbore-scale integration (Newsham et al. 
2019a, b, and c). The compositional analysis of fluids 
must also be included in all subsurface disciplines to 

TAKEAWAYS 
While many current technologies are still 
acceptable, challenges to be tackled 
include seismic amplitude preservation 
and complex near-surface conditions. 
 
The focus of the geology, geochemistry, 
and petrophysics disciplines has shifted 
toward defining kerogen type, TOC 
enrichment or leanness, thermal maturity 
vs. time, and the distribution of organic 
matter. 
 
Understanding depositional 
environments using mineralogical 
indicators is key for geologists and 
petrophysicists for the prediction  
of derived properties at the basin  
scale and their integration into  
per-wellbore-scale information. 
 
Geomechanical efforts and principles 
have been completely altered by the 
horizontal drilling environment, and 
acoustic and borehole-image-based 
logging tools are now being used in the 
opposite intended direction. 
 
Improved understand of the  
stress state of a given basin and 
formation will help with enhancing or 
inhibiting fluid flow by taking into 
consideration the well orientation and 
completion impact on the rock column. 
 
Petrophysically, it is now possible to 
apply thinly bedded analytical solutions 
by modifying the equations previously 
used for property interpretation by using 
measurements made on unconventionals 
specifically. 
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map which waters will produce where and why as the industry continues to unravel water 
production with hydrocarbons in targeted formations where geology and petrophysics quantify 
both fluid phases in the subsurface; however, the disciplines continue to struggle to predict the 
production ratios of fluid phases.  

 
Geomechanical efforts and principles have been completely altered by the horizontal drilling 
environment. Acoustic and borehole-image-based logging tools are now being applied in the 
opposite orientation for which the tools were designed to function. Fracture presence, type, and 
distribution are more important than ever, as these inputs can be built into discrete fracture network 
models, showing the industry how fracture behavior is influenced by wellbore drill path, design, and 
completion treatments. First-order geomechanical property interpretation from well logs (including 
gamma ray, bulk density, and sonic by petrophysicists) has indicated that in horizontal environments, 
the tools need to be pulled apart and every sector of a given acoustic array deciphered to make sure 
that accurate dynamic Poisson’s ratio and Young’s modulus values are estimated (Market and Deady 
2008; Waters et al. 2011).  
 
The primary focus currently lies with trying to better understand the stress state of a given basin 
and formation. This understanding helps with enhancing or inhibiting fluid flow by taking into 
consideration the well orientation and completion impact on the rock column. Defining the 
minimum and maximum stress states or constraints from derived stress envelopes is critical to 
influence business production results. It has also become important to model and predict the 
instantaneous stress imparted by fracturing technology vs. the isotropic or anisotropic natural state 
of the rock column. Stress profiles and applied modeling are used critically for all horizontal 
fracturing designs, wellbore placement, and predictions regarding how complex a given fracture 
design imparted to the rock could end up being. 

 
Petrophysically, it is now possible to apply thinly bedded analytical solutions by modifying the 
equations previously used for property interpretation by using measurements made on 
unconventionals specifically (Silva and Bassiouni 1985; Sondergeld et al. 2010). A focus on the 
interpretation of geomechanical properties, along with pore pressure and fracture gradients, is also 
important. An understanding of effective vs. absolute vs. steady-state permeability is critical, and 
guidance for reservoir engineers—from capillary pressure to relative permeability measurements—
is needed. Multiple tools and instruments are used to arrive at common data sets for the same 
parameters, cross-checking the uncertainty in all the competing technologies on the market that are 
still evolving into best-practice solutions. Cluster-based or machine-learning (ML) rock-typing 
models are critical to feed simulation efforts to ensure that the permeability of the formation varies 
appropriately, influencing fluid-flow understanding in 1D single-wellbore modeling to 3D multiwell 
modeling. A new focus has been placed on advancing and interpreting mobile water vs. bound water 
(beyond the foundational capillary-free, capillary-bound, and clay-bound definitions) (Nikitin et al. 
2017; Pepper et al. 2019). The same applies to the understanding of hydrocarbon-phase mobility 
related to adsorption and its impact on preferential fluid-flow dynamics.  

 
Advanced workflows for basin modeling, the mobility of fluids, and dynamic fluid-flow modeling 
and simulation have come a long way and continue to advance. Operational deployment methods 
for openhole tools in the horizontal logging environment have advanced and continue to improve. 
Horizontal environmental tool response modeling should continue to be investigated. 
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Evolving and Future Needs and Expectations 
Despite many impressive improvements, seismic 
prestack amplitude preservation and the ability to use the 
image for structural and amplitude/amplitude variation 
with offset in quantitative seismic interpretation remain 
challenges. Inversion for more-complex reservoir 
properties, such as anisotropy, also poses difficulties and 
depends on the reservoir properties (such as thickness). 
Similarly, imaging under a complex overburden and 
water-layer multiples and obtaining a better velocity 
model for imaging using full waveform inversion remain 
challenging.  

 
The geophysical industry is moving toward increased 
sampling, and seismic data quality is increasing 
immensely. The use of seismic for unconventionals is 
still a work in progress. In general, each piece of 
substantial seismic technology has taken 5 to 10 years to 
mature, and we are, in some sense, still in the early 
development phase, but the technology is maturing for 
unconventional applications. In unconventionals, there is 
more demand to estimate properties like pore pressure, 
anisotropy, and stress that can show very weak sensitivity 
to seismic data. Rock physics for unconventional 
reservoirs is still an area of research, and promising 
methods are being developed. Moreover, the use of fiber 
optics (FO) data in geophysics is a new frontier that 
shows great promise. FO data during completion can 
provide information on aspects such as the most-
productive stages, fracture dimensions by stage, optimal 
usage of pressure, injected fluids and proppants present 
during each stage, and connectivity between wells. The 
use of FO during production can help produce a flow 
profile, and FO can be run at any time during production 
to see changes in the flow profile. 

 
There has been a significant shift toward advanced 
analytics, ML, and artificial intelligence (AI) applications 
geared to the geologist, geophysicist, geochemist, and 
petrophysicist. ML is expected to substantially help 
simplify and improve seismic data analysis and interpretation. Much data are available for ML/AI 
projects, but a significant amount of time and effort are spent on data curing and preprocessing (Akkurt 
et al. 2018).  

 

TAKEAWAYS 
There is more demand in unconventionals 
to estimate properties like pore pressure, 
anisotropy, and stress that can show very 
weak sensitivity to seismic data.  
 
The use of FO data in geophysics shows 
great promise. 
 
While there has been a significant shift 
toward the use of advanced analytics, ML, 
and AI applications, much time and effort 
are spent on data curing and 
preprocessing. 
 
Additional advancements have focused on 
openhole, casedhole, and production 
logging tools, in addition to laboratory-
based methods, instruments, and 
measurements. 
 
Advancements are needed in the areas of 
openhole wireline tools, product impacts, 
and mud logging. 
 
Properly defined methods of calibrating 
subsurface reservoir characterization 
models are needed that use techniques 
and principles rooted in unconventional 
measurements and applications.  
 
Additional challenges that merit continued 
focus include laboratory core analysis 
techniques and workflows, subsurface 
stress states, and static to dynamic 
behavior constraints. 
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Additional advancements have focused on openhole, casedhole, and production logging tools, in 
addition to laboratory-based methods, instruments, and measurements. There has also been a focus 
on standard laboratory rock-property measurements to improve the crushed-rock analytical 
technique that Luffel and Guidry (1989, 1992) developed that has driven unconventional analysis 
for more than a decade. Techniques that involve a closed retorting quantification method are 
resulting in saturated volume reporting that is more than 90% accurate when compared to standard 
techniques, whose accuracy can range from 55 to 85%. The measurements and analyses of organic 
matter have advanced as a result of programmed pyrolysis multiramp methods, open and closed 
retort methodology, and scanning electron microscopy (SEM)-based quantification and 
segmentation volumes (Cheng et al. 2008; Jarvie 2012a, b; Loucks et al. 2012; Loucks and Reed 
2014; Durand et al. 2019). The now-commercialized low-temperature hydrous pyrolysis (LTHP) 
method is revolutionizing the extraction of oil from whole core, resulting in accurate in-situ fluid 
to rock type characterization.  

 
Multiple tools, including the LTHP method, are focused on and succeeding in production 
allocation typing through geochemical, petrophysical, geological, and engineering integration. A 
link between the LTHP techniques and correction methodology for closed retort and fluid-loss 
quantification for crushed-rock volumes might aid subsurface disciplines in the coming years. 
Additionally, multiramp or customized programmed pyrolysis worm flows focused on dissecting 
the volatile hydrocarbon region are helping to link fluid composition type to programmed pyrolysis 
results and might prove to be highly valuable in helping differentiate mobile vs. immobile 
hydrocarbon-phase fluids linked to possible recoverable volumes. Reservoir laboratories have 
designed workflows to physically integrate SEM-based volumes and then model dynamic fluid 
flow, which shows for a given completion design how the fluids in the pore system of a given rock 
type will be produced (Camp et al. 2013; Olson 2016). Significant advancements in water- and 
hydrocarbon-phase mobility vs. immobility have been made and are a continued focus in the 
technical disciplines. 

 
A continued push is necessary to update and redesign openhole wireline tools so that they can be 
effectively implemented in high-angle logging environments. Advanced and more-accurate 
methods, measurements, applied principles, and tests related to production impacts are sorely 
needed. An area that begs for more science is mud logging—such as in the analysis of cuttings, 
gas chromatography—especially in unconventional lateral wells where logs are rarely run. Mud 
logs cut the formation before invasion and/or fracturing and could provide unique information not 
available from other methods.  

 
The representativeness of laboratory measurements for geological, geophysical, and 
petrophysical properties is always a concern, especially as they are applied to tight rocks. It is 
not certain whether in-situ conditions can be duplicated in laboratory tests or how measurements 
can be scaled to represent the reservoir. Perhaps now is the time to think about robust ways of 
calibrating models on the basis of reservoir performance. Properly defined methods of 
calibrating subsurface reservoir characterization models are needed that use techniques and 
principles rooted in unconventional measurements and applications rather than those from 
previously defined conventional applications.  
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Despite the significant advances of the past 10 years, the 
following shortcomings and challenges deserve continued 
focus and further advancement as we develop the reservoir 
characterization of the 21st century: 

• Openhole, casedhole, and production logging  
• Laboratory core analysis techniques and workflows 
• Application of ML and AI 
• Resolving scalability 
• Linking in-place assessments to recoverable 

reserves predictions 
• Rock and fluid interactions and their influence on 

quantification 
• Subsurface stress states 
• Static to dynamic behavior constraints 

 
Critical Knowledge and Experience To Be Preserved  
and Transferred 
Although technologies for reservoir characterization continue 
to improve, the standard tools and methodologies require 
significant improvements to accurately measure and assess the 
quality of modern reservoirs. Reservoir characterization 
should be performed using an interdisciplinary approach, with 
attention given to minor fractures and pore-scale flow and 
primarily based on detailed core analysis. Statistical fracture 
analysis should be based on adequate structural models that 
distinguish the different occurring fracture subsets, and these 
structural models should be supported by adequate multiple-
porosity numerical models. 

 
Characterizing and modeling flow in fractured porous media 
are expected to be continuing challenges. An appropriate 
approach to reservoir simulation should consider that 
fractured rock volumes, showing the same permeability values under steady-state conditions, can 
exhibit substantially different hydraulic behaviors under dynamic conditions.  

 
Integration is a term that is often loosely applied; it can mean different levels of disciplines coming 
together for a combined subsurface characterization or a model that combines a host of data but 
does not require more than one scientific discipline to quantify rock and fluid properties. The 
establishment of a new discipline, such as asset geology or petrophysics, or the use of embedded 
technical working models could help refocus integration. While the experts and specialists are still 
necessary in justifying the principle specific needs and focus, the asset can define the role and 
input of all disciplines and integrate them to improve the description and prediction of rock and 
fluid-flow behavior in unconventional hydrocarbon-bearing formations.  

 

TAKEAWAYS 
Reservoir characterization should 
be performed using an 
interdisciplinary approach. 
 
Reservoir simulation should 
consider that fractured rock 
volumes under steady-state 
conditions can be substantially 
different from those under  
dynamic conditions.  
 
The essence of integration should 
be preserved to combine the input 
from all disciplines and integrate it 
to improve the description and 
prediction of rock and fluid-flow 
behavior. 
 
The role and integration of the 
input of all disciplines should be 
defined by the properties and  
needs of each asset. 
 
Petrophysical and rock physics 
studies are essential for supporting 
basin modelers, pore pressure 
estimates, geomechanics modeling, 
and completions optimization. 
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All subsurface characterization roles are critical to the foundation of the oil industry: the evaluation 
and quantification of hydrocarbons. The petrophysical discipline is applied when taking the 
acquired data or concepts and constraining the prediction of a given resource volume. Supporting 
basin modelers, pore pressure estimates, geomechanics modeling, and completions optimization 
design all require petrophysical and rock physics studies. The subsurface disciplines are unique in 
trying to combine static subsurface characterization measurements with dynamic wellhead results 
and build those into a predictive hypothesis and model. All disciplines require support from other 
specializations to execute science-based applications. Can each discipline help the others more by 
applying a different lens to the same data sets? 
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Introduction 
Core analysis is central to hydrocarbon exploration and production. Core samples extracted from 
reservoir rocks produce large volumes of data for many types of studies, including petrographical 
and petrophysical characterizations, reservoir performance prediction, source and seal analysis, 
and geomechanics, formation damage, geochemistry, and well engineering studies. Core data 
constitute the “ground truth” (McPhee et al. 2015), and accurate core analysis is essential before 
any reservoir study is begun.   

 
While there is an established laboratory protocol of core analysis for conventional reservoirs, the 
link between the laboratory results and reservoir fluid dynamics has yet to be fully established. 
Furthermore, core analysis for unconventional reservoirs is still in its infancy. This section presents 
a synopsis of the existing challenges in the current practice and speculates on the path core analysis 
should take to tackle the current challenges and to meet future industry needs.  
 
History, Background, and Original Concepts  
The established core analysis practice is a result of decades-long, extensive research and industry 
application. [Refer to McPhee et al. (2015) for a discussion on the development of core analysis.] 
Early work focused mostly on geological description, routine core analysis (RCAL) data 
gathering, and reservoir performance assessment through simple corefloods using synthetic 
fluids. Core analysis has since continuously evolved, with new requirements for improved 
understanding—such as wettability and reservoir recovery mechanisms—and by introducing 
new technologies such as the simultaneous measurement of capillary pressure and electrical 
properties using high-pressure porous plates, the recording of fluid-phase pressure during 
coreflooding, in-situ saturation monitoring, pore-scale visualization, and nuclear magnetic 
resonance (NMR). Multisensor core scanning now allows the true value of the information held 
within the core to be realized. 
 
Core analysis is an integrated process. Acquiring core data does not only involve conducting the 
desired tests on extracted core samples but also requires an extended and detailed process that 
includes planning a fit-for-purpose study program, low-invasion/sponge/pressure coring, the 
wellsite handling of cores, transportation, pre-analysis processing, plugging, sample selection, 
laboratory testing, a data quality check, and a collective analysis of the data from the perspectives 
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of various disciplines (geology, petrophysics, and reservoir 
engineering). Laboratory testing forms only one part of this 
multitask process, and failure at any step of this integral 
process has the potential to invalidate the produced data. 
Moreover, many technical questions exist regarding how to 
upscale from the pore to the core scale with the incorporation 
of subcore-scale heterogeneity.  
 
Many methods/techniques, such as overburden correction 
and the use of preserved cores vs. restored cores, have been 
developed to ensure that laboratory core data are 
representative of the reservoir conditions before entering 
them into a geological or reservoir model. However, there is 
still considerable uncertainty in interpretations. The primary 
sources of uncertainty are the difficulty of conducting tests 
at in-situ conditions and the alteration of petrophysical 
properties related to mud invasion and the inevitable 
chemical and mechanical rock material changes when the 
core is brought to the surface.  
 
Determining how to enter core data into static and dynamic 
models has been a challenging task for decades. Recent 
improvements in reservoir characterization and numerical 
simulation have made it possible to run simulations on more-
complex numerical grids of reservoir-representative 
heterogeneity. This has inevitably required more-complex data 
inputs for robust numerical predictions. Initially, a single set of 
pc(Sw) and kr(Sw) or kr(Sg) curves was deemed sufficient for 
studying a reservoir; nowadays, multiple curves are required 
for specific types of reservoir rock. This so-called rock typing 
allows geoscientists and engineers to characterize reservoirs 
much more effectively, but the pc(Sw) and kr(Sw) or kr(Sg) 
curves assigned to each rock type must be delineated in such a 
way as to represent reservoir recovery mechanisms at different 
scales for accurate predictions.  
 
The imaging of rock pore space combined with advanced 
computational methods have resulted in digital core analysis 
(DCA). Currently, almost all core analysis data could be 
generated digitally, which allows digital core computations 
to be made at various scales so that an upscaling from pore 
to core can be investigated. A complete replacement of 
laboratory data with DCA data is unlikely and probably 
undesirable because of the uncertainty in replication. 
Although proponents of DCA would strongly disagree that 
the relevance of the digitally derived data has not been 

TAKEAWAYS 
The established core analysis practice 
is a result of decades-long, extensive 
research and industry application. 
 
Core analysis is an integrated and 
extended process, and failure at any 
step has the potential to invalidate 
the produced data.  
 
Many methods/techniques have been 
developed to ensure that laboratory 
core data are representative of the 
reservoir conditions, but there is still 
considerable uncertainty in 
interpretations.  
 
Determining how to enter core  
data into static and dynamic models 
has been a challenging task for 
decades, but recent improvements in 
reservoir characterization and 
numerical simulation have made  
it possible to run simulations on 
more-complex numerical grids of 
reservoir-representative 
heterogeneity.  
 
Currently, almost all core analysis data 
could be generated digitally (DCA), 
which allows digital core 
computations to be made at various 
scales so that an upscaling from pore 
to core can be investigated.  
 
Core analysis data for unconventional 
reservoirs are as important as those 
for conventional reservoirs, but most 
of the conventional techniques for 
RCAL are inapplicable to these 
reservoirs.  
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proven, many major operators who themselves advocate 
for or support DCA still rely on conventional laboratory 
experiments to provide critical reservoir data.  
 
Core analysis data for unconventional reservoirs (shales, 
tight formations, coalbed methane, gas hydrates) are as 
important as those for conventional reservoirs. However, 
the tight nature of unconventional rock, as well as 
recovery mechanisms, often render most of the 
conventional techniques for RCAL inapplicable. The 
issues of core extraction, core sampling, and reservoir-
representative samples are compounded in 
unconventional rocks by complex geomechanical and 
surface chemistry properties.  
 
Current Status 
Although insufficient characterization of a reservoir is 
one of the primary causes of uncertainties in oil-in-place 
and reserves calculations, core acquisition is often 
assigned a low priority these days. Currently, there exists 
no standard in the industry regarding how much core data 
are needed and the minimum/sufficient data volume 
needed for special core analysis (SCAL). RCAL and 
SCAL techniques and workflows are well-established, 
and much literature is available; however, workflows are 
not standardized, and in some cases, best practices do not 
reflect modern developments like automatic numerical 
history matching of experiments and DCA. Similarly, the 
lack of an established best practice in rock typing 
influences plug selection and the overall SCAL program. 
Sample-to-sample variation within a rock type and 
uncertainties from measurements lead to substantial 
variation/uncertainty in SCAL data. Numerical data 
interpretation, including uncertainty modeling, helps 
manage such uncertainty.   

 
Sample preparation is one of the biggest challenges today 
in terms of keeping the rock representative of the 
subsurface conditions (in terms of wettability and 
mineral integrity). The uncertainty resulting from the 
difficulty of conducting tests on unaltered samples at in-
situ conditions also persists. Although some aqueous- 
and oil-phase tracers have been used to understand the 
impact of filtrate invasion on the core state, the phrase 
“reservoir representative” is still vague. A prime example 
is wettability, which controls every factor relevant to the 

TAKEAWAYS 
The industry suffers from a lack of 
standardization and best practices, which can 
lead to substantial variation/uncertainty 
in the data. For example, while RCAL and 
SCAL techniques and workflows are well-
established, the workflows are not 
standardized, and in some cases, best 
practices do not reflect modern 
developments like automatic numerical 
history matching of experiments and DCA.  
 
Sample preparation is one of the biggest 
challenges today in terms of keeping the 
rock representative of the subsurface 
conditions, and the uncertainty resulting 
from the difficulty of conducting tests on 
unaltered samples at in-situ conditions also 
persists.  
 
Core analysis currently lacks standardized 
QC/QA methodologies.  
 
New techniques are currently being 
explored for the rock properties, such  
as permeability and effective and total 
porosity, that describe emerging flow 
mechanisms in unconventional reservoirs.  
 
SCAL in unconventionals also remains 
primitive, mostly because of the inability to 
saturate ultratight rocks to known saturation 
states. NMR could be useful.  
 
Current approaches barely extract  
a small fraction of the information the core 
holds, but big-data methods could be 
useful. In the smart core analysis concept, 
automated high-resolution core data 
logging is combined with data analytics and 
machine learning on all new cores before 
analysis is performed.  
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contents of the reservoir and their in-situ transport. In particular, pc(Sw) and kr(Sw) curves are 
significantly affected by wettability. There are standard methods—such as the Amott and the US 
Bureau of Mines tests—for use in the laboratory, yet the in-situ wettability cannot be accurately 
assessed. Furthermore, accurate assessments of in-situ wettability raise additional questions 
regarding how best to restore and/or preserve the in-situ state.       
 
Currently, core analysis lacks standardized quality control/quality assurance (QC/QA) 
methodologies. SCAL programs are relatively expensive and time consuming, and reservoir core 
material is often quite limited. Furthermore, inadequate SCAL programs and the misinterpretation 
of SCAL data can lead to poor forecasts and incorrect business decisions. Numerical data 
interpretation, including uncertainty modeling, helps manage some of the uncertainty in the analysis, 
and in rather rare cases, numerical simulations are used for data interpretation and QC, which helps 
include full physics and link relative permeability and capillary pressure measurements.  
 
New techniques are currently being explored for the rock properties that describe emerging flow 
mechanisms in unconventional reservoirs. Permeability and effective and total porosity appear to 
be more challenging to measure for unconventional reservoirs. Even porosity in the traditional 
sense is not easily defined and measured because of gases that permeate through nanometer-sized 
pores. Permeability methods in unconventionals definitely require clarification. We have made 
good use of the crushed-rock method, but it is very empirical. There is still a lack of understanding 
of permeability “states,” such as Klinkenberg, air, gas, and specific brine permeability.  
 
SCAL in unconventionals also remains primitive, mostly because of the inability to saturate 
ultratight rocks to known saturation states. NMR could be useful. Diffusion, wettability, capillary 
pressure, and spontaneous imbibition are currently under broad investigation for the development 
of robust laboratory methodologies. Relative permeability appears to be challenging to measure 
and could dynamically change as the reservoir ages depending on sorption, geomechanics, and 
changes in wettability. Commercial laboratories have a limited ability to conduct corefloods on 
rock samples of submillidarcy permeability. The workload is high for SCAL analysis in 
unconventionals because measurements need to be conducted at current and future reservoir 
conditions with advanced equipment and protocols. Enhanced oil recovery (EOR) in 
unconventionals, which is emerging and will likely have a significant economic impact, also 
requires sophisticated core analysis practices. 
 
Current approaches barely extract a small fraction of the information the core holds. One method 
of acquiring big data is the smart core analysis concept, where automated high-resolution core data 
logging is combined with data analytics and machine learning on all new cores before analysis is 
performed. The data analytics and machine-learning methods, originally developed outside of the 
oil and gas industry, are rapid, nondestructive, and noninvasive. Various government and operator-
owned core repositories worldwide are currently in the process of or considering creating “digital” 
clones of the physical cores using multisensor core logging. 

 
Evolving and Future Needs and Expectations 
The first and foremost gap in core analysis is the lack of a unified industry standard for a complete 
and integrated core analysis process. Such a standard would provide a strong base for all 
stakeholders (commercial labs, operators) and improve data acquisition and quality. Currently, 
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many geoscientists (geomodelers, petrophysicists) and 
engineers (simulation engineers) in the industry use core 
analysis data, but only a few are involved in the 
collection of the data. Given the lack of standards, it 
remains difficult for those who are not involved in the 
data collection to understand the process, posing a risk 
that unrepresentative data will be used in reservoir 
modeling studies. Standardization should include data 
interpretation workflows and ensure an honest 
assessment of experimental errors, data uncertainties 
with respect to study objectives, and the 
representativeness of data regarding reservoir conditions.  
 
Like other data, core analysis data are uncertain, and that 
is often ignored in core data management. The sources of 
uncertainty in core analysis data range from experimental 
errors to interpretation uncertainty, and it is not 
uncommon to see two different measurements from two 
laboratory vendors for sister core samples (Hensel et al. 
1988; Forbes 1997). Commercial laboratories’ QC/QA is 
mostly restricted to the data they are producing, and this 
level of QC/QA is insufficient for the needs of 
petrophysicists and reservoir engineers, to calibrate logs 
and build saturation/height functions and relative 
permeability curves. QC/QA practices for six sigma 
approaches (Allen 2006) to core analysis are currently 
lacking, which stems from the time-consuming nature of 
SCAL and RCAL methodologies, the difficulty of 
identifying homogeneous duplicate samples, and a lack 
of standard and best-practice protocols across vendors. 
New technologies could be adapted to improve QA 
practices. An example would be to use 3D-printed rock 
proxies to create sets of self-similar QA samples and 
have them tested simultaneously at multiple laboratories.  
 
With few exceptions, the data from core analysis present 
no more than a “snapshot” of the selected sample. 
Furthermore, different disciplines may have different 
views on sampling; while the SCAL expert is interested in 
rather homogeneous samples, the petrophysicist may be 
interested in samples relevant for log calibration and 
interpretation, and the reservoir engineer is interested in 
the high-permeability zones. As a result, important 
features of reservoirs (especially carbonates) could remain 
unexplored by core analysis, which, in turn, restricts the 
coverage of the relevant recovery mechanisms. An 

TAKEAWAYS 
A unified industry standard for a 
complete and integrated core analysis 
process is needed to provide a strong 
base for all stakeholders and improve 
data acquisition and quality.  
 
New technologies could be adapted to 
improve QA practices. An example would 
be to use 3D-printed rock proxies to 
create sets of self-similar QA samples and 
have them tested simultaneously at 
multiple laboratories.  
 
An objective criteria catalogue for core 
analysis must be developed and linked to 
the needs of the disciplines for each 
development strategy. A “smart” core 
analysis approach could provide a large 
data volume that is effectively 
continuous and enables “intelligent” core 
sampling for studies of all kinds. 
 
A need exists to increase awareness of 
the designing and planning of a core 
analysis study, especially among young 
engineers.  
 
Because current preserved- and 
restored-state methodologies have been 
developed without performing a 
definitive assessment of the in-situ 
wetting state, validation is lacking. 
Unified workflows on sample preparation 
(cleaning/aging) could  
be required. 
 
In unconventional rocks, the issues of 
core extraction and sampling and what 
constitutes reservoir representative 
samples are compounded by complex 
geomechanical and surface chemistry 
properties.  
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objective criteria catalogue must be developed and 
linked to the needs of the disciplines for each 
development strategy. A “smart” core analysis 
approach that involves automated core scanning and 
would precede both RCAL and SCAL could provide a 
large data volume that is effectively continuous (on a 
submillimeter scale, in some cases) and enables 
“intelligent” (informed) core sampling for studies of 
all kinds. 
 
McPhee et al. (2015) suggest that most legacy core 
data are not useful because of the lack of a proper fit-
for-purpose design. A need exists to increase 
awareness of the designing and planning of a core 
analysis study, especially among young engineers. 
Numerical simulation engineers use the Corey model 
to produce kr(Sw) curves and the Brooks-Corey model 
for pc(Sw) curves. These models might be acceptable 
for green fields or marginal fields, but it is essential 
to produce these curves based on a ground truth—a 
large volume of high-quality data that properly 
represents reservoir rock and fluid properties and 
reservoir recovery mechanisms.  
 
Because current preserved- and restored-state 
methodologies have been developed without 
performing a definitive assessment of the in-situ 
wetting state, validation is lacking. Unified 
workflows on sample preparation (cleaning/aging) 
could be required. Moreover, newer developments 
like digital-rock physics could become a more-useful 
tool to bracket the uncertainties envelope in kr(Sw) 
and pc(Sw) curves by simulating the sensitivities to 
interfacial properties, which could enter the reservoir 
simulation workflow. The proper numerical 
evaluation also allows for honest uncertainty 
modeling, delivering a range of kr(Sw) and pc(Sw) 
curves rather than single curves. This is a required 
input for modern stochastic reservoir modeling; the 
simultaneous numerical history matching of multiple 
SCAL data sets should be a best practice, but it is not 
a common standard.  
 
In unconventional rocks, the issues of core 
extraction and sampling and what constitutes 
reservoir-representative samples are compounded 

TAKEAWAYS 
The few published standards and guidebooks 
that exist have mostly focused on 
conventional reservoirs and better represent 
laboratory perspectives; similar guidelines for 
unconventional reservoirs (shale, coal) and 
green fields are needed.  
 
Because core data have been collected for 
decades, there could be an opportunity  
to apply data analytics techniques to 
understand, for example, the patterns  
for certain rock types. An industry 
collaboration could add value to this 
through, for example, building open-source 
rock catalogs.  
 
Data fusion, upscaling, advanced imaging 
techniques, and superresolution 
convolutional neural networks could expand 
our current capabilities in replicating SCAL 
data with digital rocks.  
 
Direct numerical simulations and dynamic 
imaging of pore-scale flows provide new 
insights into the flow mechanisms that lead 
to oil mobilization, solubilization, and/or 
trapping. With the added value  
of simulations and measured SCAL 
properties, laboratory coreflooding protocols 
could be designed to select  
and refine a given recovery technology.  
 
Uncertainties with respect to the wetting 
state, interfacial tension, and other factors 
should be explored, complementing SCAL 
data. DCA provides a means to explore the 
parameter space and then direct laboratory 
studies in more-meaningful directions. 
Alternatively, DCA can be used to expand (or 
augment) currently available SCAL or RCAL 
data to create larger databases for data 
analytics.  
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by complex geomechanical and surface chemistry properties. Answers to questions such as 
whether oil-based or water-based mud is preferred, how pull-out-of-hole schedules should be 
designed, how invasion affects core analysis, and how laboratory data from different sources 
should be reconciled are still pending. Similarly, green fields almost always do not have the 
required data, and analog data are used. Unfortunately, there are no published guidelines 
regarding how an analog field should be chosen. 
 
Although extensive research has been conducted on core analysis, there are only a few published 
standards and guidebooks, which have mostly focused on conventional reservoirs and better 
represent laboratory perspectives (API RP 40 1998; McPhee et al. 2015). Guidelines for low-
quality chalks have been released (Maas and Springer 2014), but similar published guidelines for 
other types of unconventional reservoirs (shale, coal) and green fields are lacking.  
  
Considering that core data have been collected for decades, there could be an opportunity to apply 
data analytics techniques to understand, for example, the patterns for certain rock types using more 
readily available core analysis data such as RCAL and mercury intrusion capillary pressure data. 
An industry collaboration could add value to this through, for example, building open-source rock 
catalogs. This would require the standardization of data formats for interfacing with machine-
learning and/or data analytics approaches. Standardization is often the most time-consuming task 
for big-data analytics, and because legacy data are saved in various formats, an automatic data-
mining technique would be required for database generation. Once again, the problem is that data 
QC must be performed before the data can be used, and that is hard to automate.  
 
To replicate SCAL data, digital rocks must have spatial wetting properties that are representative 
at the micrometer-length scale, which is still a challenge. In addition, model domains must be large 
enough to represent subcore heterogeneity while also being of high-enough resolution to capture 
bottleneck features that influence flow. This is commonly referred to as the resolution vs. field-of-
view problem. Data fusion, upscaling, advanced imaging techniques, and superresolution 
convolutional neural networks could expand our current capabilities. The recent focus on the direct 
visualization of saturated rock under reservoir conditions has the potential to tackle the wettability 
challenge. This would provide not only informed surface properties for digital-rock simulations 
but also insights into defining the term “reservoir-representative core.” A significant gap in DCA 
is how to accurately represent heterogeneity and wettability because of problems associated with 
the generation of reservoir-representative cores for SCAL workflows.  

 
DCA also offers great potential for understanding recovery mechanisms at various scales, which 
could especially add value for unconventional reservoirs and EOR technologies. Direct numerical 
simulations and dynamic imaging of pore-scale flows provide new insights into the flow mechanisms 
that lead to oil mobilization, solubilization, and/or trapping. With the added value of simulations and 
measured SCAL properties, laboratory coreflooding protocols could be designed to select and refine 
a given recovery technology. Note, however, that large uncertainty in direct core measurements for 
unconventionals could restrict the validation of DCA computations of core properties. 
 
Uncertainties with respect to the wetting state, interfacial tension, and other factors should be 
explored, complementing SCAL data. As a result, an uncertainty envelope rather than a defined 
saturation function could be used in reservoir simulations. In advanced studies, such as EOR 
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corefloods, there are wide ranges of parameters that 
cannot be tested within a reasonable time frame using 
standard laboratory techniques. DCA provides a means 
to explore the parameter space and then direct laboratory 
studies in more-meaningful directions. Alternatively, 
DCA can be used to expand (or augment) currently 
available SCAL or RCAL data to create larger databases 
for data analytics. Many machine-learning algorithms 
require a preconditioner before they are trained for a 
specific task. The preconditioner could be digital-rock 
data. Then, a specific reservoir could be fine-tuned using 
existing SCAL and RCAL data.    
 
Standards and best practices, including more-recent 
developments like the automatic numerical history 
matching of experiments and DCA, need to be defined; in 
many cases, SCAL laboratories still rely on classical 
analytical solutions for data interpretation. This is clearly 
insufficient because the underlying assumptions are 
typically not fulfilled in SCAL experiments. For 
conventional reservoirs, such standards could be based on 
existing technology. For unconventional reservoirs, the 
community is far from developing standardization and 
new technologies, and new terminology could be required. 
 
Critical Knowledge and Experience To Be Preserved 
and Transferred 
The industry lacks common guidelines regarding how to 
handle legacy data. Every operator has a collection of 
archived data that needs to be integrated with the new 
data before any reservoir modeling study can be 
performed. In many cases, especially for smaller 
developments, insufficient or no SCAL data are 
available. In these cases, and for QC, a common SCAL 
database would be desirable. Such databases exist and are 
maintained by some companies but are not publicly 
available. The community would greatly benefit from the 
creation of a public SCAL database, particularly for 
decision making, early and small developments, and QC.  
 
Moreover, part of legacy data QC is a judgment call by the practitioner based on their direct 
experience of the methods and equipment in use at the time. Some petrophysical software packages 
allow SCAL data to be imported and implemented by users with limited knowledge. Such 
software, however, cannot discriminate between high- and low-quality data. Although experience 
is hard to impart to others, guidelines must be developed to capture, as much as possible, the best 
practices of the experts. Unfortunately, there are only a few experts in the industry who can 

TAKEAWAYS 
The community would greatly benefit 
from the creation of a public SCAL 
database, particularly for decision 
making, early and small developments, 
and QC.  
 
Although experience is hard to impart to 
others, guidelines must be developed to 
capture, as much as possible, the best 
legacy-data QC practices of the experts.  
 
The approaches for producing SCAL data 
using digital-rock simulations also need 
to be standardized and guided. One 
approach would be for the industry to 
provide grand challenges, like those 
provided for the SPE Comparative 
Solution Project but  
for digital rock, to transfer and  
share experience.  
 
Numerical history matching of SCAL data 
must be standardized to make the best 
use of SCAL data.  
 
It would be beneficial to discuss how the 
hands-on RCAL laboratory education 
could be redesigned to maximize the 
benefit for both engineers and the 
industry. University curricula could be 
expanded to include SCAL and DCA 
and/or laboratory approaches for 
unconventional and conventional rocks.  
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perform QC/QA of legacy core analysis data, especially SCAL data, and most core analysis experts 
work for major operators or as consultants. In both cases, they must perform the work for which 
they were employed, usually with project-specific or commercial drivers as the sole priority. There 
is little time (and no revenue) for such aspirational activities. Because most SCAL studies are 
performed at commercial laboratories, which have competing commercial interests, achieving the 
universal adoption of standard practices and monitoring compliance might be challenging—but 
are also necessary.  
 
The approaches for producing SCAL data using digital-rock simulations also need to be standardized 
and guided. One approach would be for the industry to provide grand challenges, like those provided 
for the SPE Comparative Solution Project (Islam and Sepehrnoori 2013) but for digital rock, to 
transfer and share experience. Various data projects, such as the Digital Rocks Portal (Prodanović et 
al. 2015), exist. However, high-quality SCAL data should be produced in a laboratory to validate the 
digitally generated data to advance this field and identify valid/robust approaches.    
 
Numerical history matching of SCAL data must be standardized to make the best use of SCAL 
data. Proper numerical data interpretation and uncertainty modeling require a good understanding 
of the experimental procedures and the underlying physical processes. However, numerical SCAL 
interpretation tools are often proprietary or commercial, which limits their use to very advanced 
SCAL laboratories. This is a problem, particularly for smaller developments and educational 
purposes, and the field would benefit greatly if the experience and guidelines could be documented 
and transferred to younger practitioners. 
 
It is also important to address the problem at its core. RCAL is typically offered in petroleum 
engineering undergraduate curricula, but that is all the core analysis education a petroleum 
engineer might receive unless they participate in experimental work during their postgraduate 
studies. It would be beneficial to discuss how the hands-on laboratory education could be 
redesigned to maximize the benefit for both engineers and the industry. Although unconventional 
reservoir evaluation techniques have evolved significantly after the examination of many tens of 
thousands of feet of core, the information regarding protocols and results is closely held, but these 
procedures and their advantages and limitations must be disseminated by means of education (e.g., 
short courses). University curricula could be expanded to include SCAL and DCA and/or 
laboratory approaches for unconventional and conventional rocks. Programs could be offered as 
elective courses and/or upskilling courses/workshops for industry professionals. 
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Introduction 
The definition and economic viability of a hydrocarbon 
reservoir strongly depend on the quantity and type of fluids 
present, quality of the reservoir, and productivity of the wells 
bringing the fluids to the surface. Although static measurements 
can provide early estimates, the only direct approach for 
assessing these characteristics is to analyze the effective fluid 
flow from the reservoir. The analysis of the effective fluid-flow 
data, originally called well-test interpretation, is now known as 
pressure transient analysis (PTA). 
 
In PTA, the pressure response to a production/shut-in 
sequence imposed at the well is interpreted by matching the 
field data with an appropriate analytical or simplified 
numerical model to estimate reservoir properties and 
completion efficiencies. Historically, the primary flow 
regime of interest was infinite-acting radial flow (IARF), 
which provided an estimate of the fluid mobility in the 
reservoir, the productivity of the well, and some extrapolated 
pressure. However, methods have evolved to identify and 
match wellbore behaviors and complex well geometries 
(generally early time), reservoir heterogeneities, and 
boundaries (late time).  
 
History, Background, and Original Concepts 
Until the late 1950s, well testing was mostly limited to determining reservoir permeability, the 
skin effect or productivity index, the drainage area, and average reservoir pressure using relatively 
limited solutions and models by van Everdingen and Hurst (1949), Miller et al. (1950), Horner 
(1951), and others. Analysis was performed by identifying the IARF portion of the pressure 
transient data from a straight-line behavior on a semilog plot of pressure vs. a logarithmic time 
function that may or may not have been corrected for the production history. This approach, known 
as straight-line analysis, was later extended to other types of flow regimes—such as spherical, 

TAKEAWAYS 
Well analysis was initially limited to 
the use of oversimplified models and 
semilog plots. 
 
Log-log type-curve analysis was 
developed in the 1970s. 
 
The foundations of minifracture  
(or DFIT) tests were laid in the  
late 1970s.  
 
Pressure-derivative analysis 
introduced by Bourdet et al. (1983) 
significantly improved the 
identification of flow regimes  
for straight-line analysis and 
confidence in type-curve matching.  
 
In the late 1980s and in the 1990s, 
the development of software 
enabled computerized PTA and  
the use of complex analytical  
and numerical models in 
interpretations.  
 
The deployment of permanent data 
measurements created enormous 
quantities of  
pressure data. 
 
The introduction of efficient 
deconvolution algorithms improved 
the ability to analyze multirate and 
multiwell tests. 
 



 

 
 

24 

linear, and bilinear flow—on the basis of the existence of a linear trend on the Cartesian plots of 
pressure vs. a specific time function.  
 
New models (e.g., for naturally fractured reservoirs; Barenblatt et al. 1960; Warren and Root 1963; 
Kazemi 1969) were developed in the 1960s. New solutions and analysis concepts (e.g., wellbore 
storage and skin type curves) developed throughout the 1970s (Agarwal et al. 1970; Ramey 1970; 
Earlougher and Kersch 1974) became some of the fundamental analysis tools and laid the 
foundation for computerized PTA (Abbaszadeh and Kamal 1988; Allain and Horne 1990). The 
log-log type-curve-matching approach was enhanced by the concept of independent variables, and 
it became more useful as a reservoir description tool during exploration. 
 
Interest in fracturing tight-gas wells gave rise to fractured-well-test models in the mid-1970s and 
early 1980s (Gringarten et al. 1974; Cinco L. et al. 1978; Cinco-Ley and Samaniego 1981). The 
foundations of minifracture tests and diagnostic fracture injection tests (DFITs) were also laid in 
the late 1970s (Cleary 1979; Nolte 1979). 
 
In the early 1980s, prompted by a revolution in electronic gauges, pressure-derivative analysis 
(Bourdet et al. 1983) was a significant breakthrough in identifying the flow regimes for straight-
line analysis and improving the confidence in type-curve matching due to the simultaneous 
matching of pressure and pressure-derivative data. Subsequently, the development of computer-
generated complex interpretation models offered the opportunity to account for reservoir 
heterogeneities. In the late 1980s and in the 1990s, software development boosted by personal-
computer capabilities led to semiautomatic history matching with complex analytical and 
numerical models. 
 
Industry embraced horizontal-well technology in the late 1980s. This led to the development of 
pressure transient models for a wide range of applications of horizontal wells (Clonts and Ramey 
1986; Ozkan et al. 1989; Kuchuk et al. 1990; Odeh and Babu 1990; Kuchuk et al. 1991; Ozkan 
and Raghavan 1991a). 
  
In the 1990s, the fractal reservoir concept was introduced into the PTA of naturally fractured 
reservoirs (Chang and Yortsos 1990; Acuna et al. 1995), and in the 2000s, anomalous diffusion 
was introduced as a means of incorporating small-scale heterogeneity into pressure transient 
models (Raghavan 2011). In the late 1990s and early 2000s, the deployment of permanent data 
measurements created enormous quantities of pressure data that became natural candidates for 
PTA, without the need to run specific well or formation tests (Unneland et al. 1998). During the 
same period, the development of unconventional plays using fractured horizontal wells prompted 
interest in new PTA models for linear flow in naturally fractured shale-gas and tight-oil plays (El-
Banbi and Wattenbarger 1998; Brown et al. 2011; Stalgorova and Mattar 2013).    
 
Effective deconvolution algorithms were also introduced during this period, allowing successive 
buildups acquired by permanent downhole gauges to be converted into a constant-rate single 
drawdown with a duration equal to the total well production (von Schroeter et al. 2004; Ilk et al. 
2005; Levitan 2005). New deconvolution algorithms also provided new approaches for the PTA 
of multiwell tests (Levitan 2007).  
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Current Status 
PTA today has little in common with the PTA of the late 
1970s because of the tools and technologies now used, such 
as electronic gauges, permanent measurements, multiphase 
flowmeters, the latest generations of formation testers, 
microcomputers, commercial software, analytical and 
numerical models, and optimization routines. 
 
In terms of the underlying principles and methodology, 
however, not much has changed. The basic PTA methodology 
and tools—which were built on a linear diffusion combining 
Darcy’s law, the conservation of mass, and a slightly 
compressible liquid—might appear oversimplified, but they 
work reasonably well in the absence of severe nonlinearities 
and heterogeneities. Pressure/volume/temperature and 
petrophysical nonlinearities are packaged in pseudofunctions 
(Al-Hussainy et al. 1966; Raghavan 1976; Agarwal 1979) 
whenever possible to extend the linear domain. When 
nonlinear behaviors cannot be neglected or linearized, they are 
reproduced using numerical models but displayed and 
matched on the same diagnostic plots on the basis of  
linear diffusion.   
 
The Bourdet derivative remains the diagnostic and matching 
function of choice in PTA with a set of specialty plots applied 
to characteristic flow regimes. However, technical groups or 
subject-matter experts diverge on some ancillary 
methodologies, such as deconvolution (Onur et al. 2008). 
There is general agreement that deconvolution algorithms are 
useful, especially to add material-balance information and to 
establish the drainage area for a given well when grouping 
successive buildups. However, there is disagreement 
regarding the usability of multiwell deconvolution and the 
point at which nonlinearities and other system changes will 
(by definition) invalidate the process (Levitan 2007).  
 
The difficulty of understanding physical diffusion models in 
tight, unconventional plays has led to a new generation of analytical models (e.g., for fractal 
reservoirs and anomalous diffusion; Flamenco-López and Camacho-Velázquez 2003; Albinali et 
al. 2016; Raghavan et al. 2017) and the improved numerical representation of discrete fracture 
networks (Yu et al. 2018; Artus 2020).   
 
Minifracture or DFIT analysis (Gu et al. 1993; Abousleiman et al. 1994; Mayerhofer et al. 1995; 
Mayerhofer and Economides 1996; Soliman et al. 2005; Mohamed et al. 2020) is now currently 
integrated in the PTA workflow and most commercial PTA software. However, the best and most-
appropriate methodology(s) to use for minifracture analysis is a contentious issue among subject-

TAKEAWAYS 
PTA tools and technologies have 
advanced, but the underlying 
principles and methodology remain 
unchanged. 
 
When nonlinear behaviors cannot be 
neglected or linearized, they are 
reproduced using numerical models 
but matched on the same diagnostic 
plots on the basis of linear diffusion.   
 
There is disagreement regarding the 
usefulness of deconvolution, 
particularly with multiple wells. 
 
A new generation of analytical 
models and improved numerical 
representation of discrete fracture 
networks have emerged. 
 
There is disagreement regarding the 
best methodology for minifracture 
analysis. 
 
The use of numerical models varies 
significantly between operators. 
 
Harmonic testing and impulse 
tests/closed-chamber tests have 
gained renewed attention, although 
concerns remain. 
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matter experts and major service companies (Hawkes et al. 
2018). A discussion is also underway regarding whether we 
will be able to develop models that can reproduce both 
production/shut-in and fractures during opening and closure. 
 
The use of numerical models in PTA remains at the 
discernment of operators. Currently, some operators choose 
to not use numerical models, some use numerical models 
only when analytical models have failed, and others consider 
that a PTA is not complete without a final match with a 
numerical model. 
 
Harmonic testing (periodic rate sequence, sinusoidal or 
otherwise, at different frequencies) and impulse tests/closed-
chamber tests (instantaneous injection or production of a 
given volume of fluid controlled by wellbore storage) have 
gained renewed attention in the past two decades (Fokker et 
al. 2018; Salina Borello et al. 2019). These tests derive an 
interpretable periodic signal from measured pressures and 
offer the advantage of continuing production/injection during 
the test. However, some concerns currently linger about their 
interpretability and suitability for reservoir characterization 
beyond the vicinity of the well. 
 
Evolving and Future Needs and Expectations 
The accurate estimation/measurement of flow rates has always 
been the weak point in PTA. One can expect a continuation in 
the deployment of permanent measurements: the installation 
of permanent downhole pressure gauges and fiber-optic 
equipment and, increasingly, the use of high-frequency 
multiphase flowmeters. While these flowmeters are, for now, 
being reserved for high-profile wells, they could become a 
game changer if one can at last get access to high-frequency, 
high-quality pressure and rate measurements.  
 
Future improvements in PTA will also come from the use of 
a combination of measurements. New developments in 
acquiring pressure, temperature, and multiwell data, 
multiphase rates, and distributed measurements should lead 
to new workflows and procedures to enhance continuous 
appraisal and evergreen models.   
 
Costs, risks, and environmental considerations will continue 
to limit the number of conventional pressure transient 
(drillstem) tests to the minimum required. On the other hand, improved data collection by means of 
a new generation of formation testers and permanent gauges will increase the overlap of the data 

TAKEAWAYS 
The continued deployment of 
permanent measurements is expected; 
the common use of  
high-frequency multiphase flowmeters 
could revolutionize pressure and rate 
measurements. 
 
A combination of measurements— 
pressure, temperature, and  
multiwell data, multiphase rates,  
and distributed measurements—could 
lead to new workflows, enhancing 
continuous appraisal  
and evergreen models. 
 
A new generation of formation testers 
and permanent gauges will provide 
supporting data for both standard PTA 
and formation tests; PTA procedures 
will help the post-processing of data 
from new formation testing tools. 
 
If the concerns regarding a short radius 
of investigation can be addressed, the 
advantage of having uninterrupted 
production/injection during harmonic, 
impulse, and closed-chamber tests 
would offer more opportunities for 
PTA. 
 
More-adequate PTA tools are needed 
for minifracture-test applications in 
unconventionals. 
 
Automation will likely change the 
engineer’s role, but it is currently 
unclear how or if automation, AI, and 
data analytics will ultimately affect PTA 
methodology. 
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collected for PTA and formation-test analysis. It is also 
expected that PTA will take on a larger role in the post-
processing of the data acquired using these tools. 
 
If the concerns regarding a short radius of investigation can 
be addressed, the advantage of having uninterrupted 
production/injection during harmonic, impulse, and closed-
chamber tests would offer more opportunities for PTA. 
Similarly, there is more to learn and develop regarding 
injection testing—especially considering that numerical 
models can readily simulate these operations. 
 
In the area of unconventional PTA, a convergence of 
concepts/solutions for an industry-standard minifracture 
analysis methodology is needed. The development of models 
that can handle both flow and geomechanics should open the 
door to a unified PTA + minifracture workflow. Additional 
developments in modeling flow behavior in unconventional 
reservoirs should be expected and will possibly incorporate 
nanoscale models of storage and flow behavior (e.g., 
anomalous diffusion, adsorption, molecular sieving). Last, the 
industry should be able to reach an agreement regarding what 
deconvolution algorithms can/cannot and should/should not 
be expected to achieve. 
 
It is currently unclear how technologies such as automation, 
data analytics, and artificial intelligence (AI) will affect PTA. 
Automation is a work that is actively in progress, and actions 
currently performed directly by an engineer may be taken 
over by automatic processes that may involve data analytics 
or AI.  
 
Industry initiatives are currently guiding technology providers to produce microservices that will be 
functionally equivalent to what engineers do using an interactive software dedicated to the same 
tasks. One outcome that seems certain is that these technologies will radically change the day-to-day 
work of an engineer, even if, paradoxically, the PTA methodology itself is unlikely to be affected. 
Ultimately, the engineer should have the final word on the selection of the physical model.  
 
Critical Knowledge and Experience To Be Preserved and Transferred 
Modern software and AI technologies have helped those with limited theoretical backgrounds use 
PTA for standard cases. However, for more-complex cases, to which PTA is expected to contribute 
the most, following recipes or using automated interpretation options leads to dramatic failures. 
To distinguish PTA from empirical curve-matching procedures, the foundations of PTA—which 
are based on the mechanics of fluid flow in geological porous media—should be preserved and 
emphasized as an integral part of expertise. It is also essential to recognize that, although PTA uses 
measured data, it is the availability of a suitable model to represent a given geological context and 

TAKEAWAYS 
The foundations of PTA and the 
importance of models (vs. varying 
practices and tools) should be 
emphasized. 
 
Because the availability of a suitable 
model enables the interpretation, 
analysts should have the knowledge 
and experience to couple their 
interpretations with the model’s 
assumptions. 
 
We must support the training of a 
new generation of model developers 
who are equipped with the 
theoretical and practical foundations 
and an ability to recognize 
nonstandard behaviors and complex 
environments. 
 
We must recognize that 
nonuniqueness is the natural 
consequence of the solution of an 
inverse problem based on an 
approximate representation of reality 
by a physical model. 
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underlying physical conditions of flow behavior and corresponding diagnostics that enables the 
interpretation. Therefore, analysts should have the knowledge and experience to couple their 
interpretations with the model’s assumptions.  
 
Some advances in the use of PTA could be possible with improved software capabilities or AI 
algorithms, but any major improvement will emerge from the development of new models. This 
requires a new generation of model developers who are equipped with the theoretical and practical 
foundations and an ability to recognize nonstandard behaviors and complex environments.  
 
As always, the nonuniqueness of PTA results should be accepted not as a weakness but as the natural 
consequence of the solution of an inverse problem based on an approximate representation of reality 
by a physical model. Analysts should recognize that the confidence intervals of PTA can only be 
improved by integrating all available well and reservoir data and understanding the limitations of the 
model to represent the reality. Most importantly, the value of information from PTA should not be 
justified on the basis of estimates of individual parameters but in terms of PTA’s contribution to the 
understanding of the well/reservoir system and characterizations of reservoirs.  
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Introduction 
Although the concepts of rate transient analysis (RTA) are founded on the same physical 
principles, solutions, and models as those of pressure transient analysis (PTA), RTA has evolved 
over time to claim its own standing as a process for reservoir characterization and diagnosis. In 
general, the data in RTA are simply used in different ways and typically over different time scales. 
Unlike PTA, where short-term pressure changes (hours or days) are interpreted, RTA evaluates 
the entire production history (months to years of data), which requires no shut-ins and causes no 
loss of production. 
 
Technically, RTA uses the same diagnostic plots and analysis protocols as PTA, which are based 
on mathematical models of physical phenomena and are often simplified using appropriate 
assumptions (flow patterns, diffusion type, heterogeneity, phase behavior). Physical parameters 
are first estimated graphically and then used to initialize and fine-tune more-complex models by 
means of automated regression algorithms for history matching.  
 
For conventional (high-permeability) reservoirs, RTA often identifies a significant portion of the 
history as boundary-dominated flow, whereas only a limited number of mostly infinite-acting flow 
regimes are expected in PTA because of its shorter duration. However, the differences between 
RTA and PTA lessen in unconventional reservoirs (low-/ultralow-permeability reservoirs) because 
the entire production history is likely to be in transient flow, and RTA becomes equivalent to a 
variable-rate PTA.  
 
Unlike the pressure data acquired during a pressure transient test, which are of a higher frequency 
and have greater accuracy, production data might be roughly estimated from daily records and 
rarely be of high quality. Moreover, from a strict theoretical viewpoint, RTA leads to a 
deconvolution problem, which requires both the production rates and the corresponding flowing 
bottomhole pressures. Although daily rates have become commonly available in the past 10–15 
years, flowing bottomhole pressure histories have historically been infrequently available and are 
often inaccurate. Despite some of its drawbacks, RTA has found more popularity in 
unconventional reservoir development because of the higher costs and operational concerns 
associated with PTA.   
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History, Background, and Original Concepts 
It has been suggested (Ilk et al. 2010) that production-data 
analysis methods are little more than observation-based 
approaches, and some are essentially rules of thumb. The 
first systematic efforts to use production data to predict the 
future performance and ultimate recovery of wells have 
been credited to the Arps (1945) empirical decline curve 
approach (exponential, hyperbolic, and harmonic 
production declines), although Arps (1945) made several 
references to previous works (Arnold and Anderson 1908; 
Cutler 1924; Marsh 1928; Allen 1931). The motivation for 
and development of RTA concepts and procedures evolved 
from both decline curve analysis (DCA) and PTA between 
the 1920s and 1970s, but RTA has emerged as a reservoir 
characterization and well-productivity analysis tool on its 
own account in the past few decades. In principle, RTA was 
always known to be a counterpart of PTA, but its potential 
was not fully explored until the early 2000s.  
 
In 1980, Fetkovich published the original work on 
production DCA using type curves, and Fetkovich (1980) is 
considered to be the fundamental reference on the subject. 
The limitation of Fetkovich’s constant-pressure production 
assumption was overcome in the 1990s (Palacio and 
Blasingame 1993). Throughout the 1990s, material balance 
was coupled with the pseudosteady-state flow theory, which 
provided an analysis/interpretation method for production 
data on a per-well basis (Palacio and Blasingame 1993; 
Mattar and McNeil 1995; Agarwal et al. 1999). Efforts to analyze production data combined with 
pressure led to analysis of the transient productivity index (Crafton 1997; Araya and Ozkan 2002). 
In 1998, a method based on convolution and DCA was presented for the analysis of bottomhole 
pressure data acquired with permanent downhole sensors along with rate measurements (Unneland 
et al. 1998). In the 2000s, guidelines and examples for production data diagnostics for model-based 
analysis (type curves) were provided, in essence bridging the gap between PTA and RTA in terms 
of analysis techniques but with a greater emphasis on long-term data as opposed to shorter-term 
pressure buildups (Mattar and Anderson 2003; Anderson and Mattar 2004; Kabir and Izgec 2006).  
 
Current Status  
Although the standard drawdown and buildup tests are still considered to be the most-reliable 
transient well tests, cost, safety, and environmental concerns have resulted in the more-common 
use of RTA since the 2000s. Current RTA theory and procedures, however, are fundamentally the 
same as those for PTA and do not differ significantly from those used before 2000. 
 
In the past three decades, the industry’s shift to horizontal, fractured vertical, and multifractured 
horizontal wells for field development—particularly in tight and unconventional reservoirs, where 

   TAKEAWAYS 
Arps relations (exponential, 
hyperbolic, and harmonic responses) 
were the first systematic effort to use 
production data to predict the future 
performance and ultimate  
recovery of wells. 
 
Fetkovich (1980) introduced 
production DCA using type curves. 
 
The concept of varying production 
pressure (Palacio and Blasingame 
1993) overcame the limitation of 
Fetkovich’s constant-pressure 
production assumption.  
 
Throughout the 1990s, material 
balance was coupled with the 
pseudosteady-state flow theory, 
which provided an analysis/ 
interpretation method for production 
data on a  
per-well basis. 
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extensive testing times are required to obtain analyzable 
pressure transient data—boosted the use of readily available 
production data. This move led to the development of new 
multifractured horizontal well models for unconventional 
reservoirs in the 2010s (Brown et al. 2011; Stalgorova and 
Mattar 2013). Developed in parallel with computational 
capabilities and enhancements in numerical simulation 
methods, numerical models now complement the suite of 
analytical models in the RTA toolbox.  
 
The significance of the deconvolution process (and the 
requirement of bottomhole flowing pressures) to convert the 
variable-rate, variable-pressure problem to a constant-
bottomhole-pressure problem, which is embedded in the 
pressure normalization of production data and material-
balance time, is not well-understood or is overlooked in the 
usual practice of RTA. The current trend is to fulfill flowing 
bottomhole pressure requirements by converting the 
wellhead pressures to bottomhole pressures using wellbore-
hydraulics models if the surface pressures are available and 
then use the pressure-normalized rate (or rate-normalized 
pressure) against a material-balance time (Palacio and 
Blasingame 1993; Mattar and McNeil 1995; Agarwal et al. 
1999) to analyze the data as if the data were from a constant-
pressure production case. However, converting wellhead 
pressures to bottomhole pressures using approximate 
wellbore models can introduce artifacts into the data and alter 
the diagnostics. Moreover, in most cases where the wellhead 
or bottomhole pressures are not available, the analysis lacks 
rigor and the rate vs. time data are used without any 
processing. It must be noted that the practice of estimating or 
assigning well rates from cumulative production or tank 
battery records likely compromises the accuracy of RTA. 
More alarmingly, RTA is sometimes interpreted as DCA, 
where the importance of underlying physics is overshadowed 
by an interest in obtaining a fit with a presumed decline trend.     
 
An important shortcoming of current RTA practice is the 
lack of well-defined procedures for the analysis of 
multiphase and multiwell production data. The available 
analytical approaches adapted from the analysis of PTA, 
such as the total mobility or pseudopressure definitions 
(Muskat 1937; Perrine 1956; Martin 1959; Raghavan et al. 
1999), include assumptions that are not readily justifiable for 
long transient production periods. The use of numerical 

TAKEAWAYS 
Current RTA theory and procedures are 
fundamentally the same as  
those for PTA. 
 
Numerical models developed  
in parallel with computational 
capabilities and enhancements  
in numerical simulation methods  
are now part of the RTA toolbox. 
 
The significance of deconvolution is 
not well-understood or is overlooked 
in RTA, and approximate procedures 
are instead used to resolve flowing 
bottomhole pressure requirements. 
 
RTA is sometimes interpreted as DCA, 
where the importance of underlying 
physics is overshadowed by an interest 
in obtaining a fit with  
a presumed decline trend. 
 
An important shortcoming of  
current RTA practice is the lack  
of well-defined procedures for the 
analysis of multiphase and multiwell 
production data. 
 
In the past decade, an interest in  
an improved representation of flow 
physics in highly heterogeneous, 
discontinuous porous media has  
led to the investigation of anomalous 
diffusion models. 
 
Although the impact of geomechanics 
on the performance of unconventional 
wells has been well-recognized, 
conventional  
RTA approaches do not consider 
geomechanical effects.  
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models in these cases amounts to history matching using a reservoir simulation study and lessens 
the benefits of RTA. 
 
In the past decade, an interest in an improved representation of flow physics in highly 
heterogeneous, discontinuous porous media—such as naturally fractured and tight, unconventional 
reservoirs—has led to the investigation of anomalous diffusion models (Raghavan and Chen 2017; 
Raghavan et al. 2017; Albinali et al. 2016; Holy and Ozkan 2016; Chu et al. 2020). These models 
enable the identification of a greater spectrum of transient flow regimes (under sub-, super-, and 
normal diffusion conditions) than those recognized by the normal diffusion equation for regularly 
ordered, linear systems. However, many RTA models for unconventional reservoirs still use 
normal diffusion and force-fit conventional flow regimes to estimate reservoir properties. 
 
Although the impact of geomechanics on the performance of unconventional wells has been well-
recognized, conventional RTA approaches do not consider geomechanical effects. Currently, the 
only option to account for the effects of geomechanics is to history match the production data with 
a complex reservoir simulator coupling numerical geomechanics and flow models. However, this 
approach blurs the distinction between RTA and full numerical reservoir simulation.  
 
Evolving and Future Needs and Expectations 
The current capabilities of RTA methodologies have reached the limits of our conventional 
comprehension of flow in porous media. That is not to say that there is no room for improvement 
within conventional perceptions, but it appears that most improvements will be in data handling 
(dealing with large volumes of data, sampling, addressing data noise) and because of better data 
becoming available with the deployment of high-resolution permanent downhole gauges. It may 
be plausible to expect the inclusion of other data types (e.g., temperature) with flow rates and 
pressures. Other important needs include the seamless integration of analysis results into 
engineering models and consistent multiwell data analysis, instead of the single-well approach 
prevalent today.  
 
In high-value wells, continuous rate and pressure measurements are acquired at every second to 
minute throughout the life of the well, offering new interpretation avenues. Bottomhole pressure 
measurements will likely become increasingly available (especially in unconventional plays), and 
downhole flow-rate measurements will be standard in deepwater operations, as well as in other 
operations where extremely large flow rates are experienced. 
 
New instruments provide accurate multiphase production data, but concerns about our ability to 
analyze multiphase flow tests persist because of the lack of appropriate models and procedures. 
Similarly, RTA use for multiwell and other complicated well tests, including those performed for 
complex reservoir geometries and heterogeneities, would benefit from the development of a sound 
theoretical base.  
 
RTA in unconventional wells remains extremely challenging, primarily because the complexity 
associated with heterogeneities such as fractures is much greater than that typically considered in 
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traditional RTA models (Chang and Yortsos 1990; 
Acuna et al. 1995; Camacho-Velazquez et.al. 2008). The 
potential of anomalous diffusion models to identify flow 
regimes and accurately interpret them in terms of 
physical parameters should be actively explored for 
RTA, particularly for unconventional reservoirs. 
Additionally, because the bulk-fluid behavior defined by 
conventional pressure/volume/temperature (PVT) 
relations is not appropriate to describe phase behavior in 
nanopore confinement (Firincioglu et al. 2012; 
Honarpour et al. 2012), confined PVT relations and 
equations of state will need to be another active area of 
future development. 
 
Currently, the impact of geomechanics is mostly ignored 
in standard RTA practices, and the complex numerical 
simulation approach does not suit the needs of RTA. 
More-effective approaches linking the RTA 
methodology with geomechanics need to be developed. 
 
It is also expected that advances in data analytics (DA) 
and artificial intelligence (AI) applications will positively 
influence RTA practice. Part of the improvements could 
come from DA capabilities in dealing with large volumes 
of permanent-gauge data, denoising, and the 
identification of outliers, while AI algorithms might 
empower the automation of RTA for standard 
applications. The promise of AI to recognize the 
underlying physical medium and flow process from data 
could be a great advance for the application of RTA in 
more-complex conditions, such as multiphase flow and 
in highly heterogeneous reservoirs. However, these 
technologies and capabilities will have to be developed 
elsewhere and be adopted for RTA. 
 
Over the past few decades, the development of analytical 
and numerical modeling algorithms has led to new 
classes of semi-automatic advanced interpretation tools 
that can handle the complexities of real problems, such 
as nonlinearity (e.g., advanced PVT, pressure-dependent 
formation properties, phase behavior), petrophysical 
heterogeneity, and geometrical complexity (boundaries, 
layering, fractures). These advances in direct modeling 
call for similar advances in interpretation/analysis steps, 
data integration, and uncertainty reduction. Because the 
analyst has to work with a collection of available models 

TAKEAWAYS 
The remaining advances in RTA will likely 
revolve around improved measurement 
using high-resolution permanent 
downhole gauges and  
data handling. 

The integration of other data types to 
improve the accuracy and confidence 
limits of RTA should be anticipated. 

Bottomhole pressures will likely become 
increasingly available, especially in 
unconventional plays,  
and downhole flow-rates will be standard 
in deepwater operations. 

Appropriate models and procedures must 
be developed to address the concerns 
about our ability to analyze multiphase 
flow tests.  

Anomalous diffusion models and 
confined PVT relations and equations of 
state should be active areas of future 
development. 

More-effective approaches linking the 
RTA methodology with geomechanics 
need to be developed. 

Automation and DA and AI applications 
are expected to positively influence RTA 
practices. 

The advances in direct modeling  
call for similar advances in 
interpretation/analysis steps, data 
integration, and uncertainty reduction.  

Ensuring that the correct flow physics of 
unconventional reservoirs is used, 
particularly when Darcy flow alone 
cannot explain all observations, remains 
an active issue. 
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that matches the data but does not necessarily ensure the 
physical consistency of the interpretation, the interpretation 
is strongly dependent on the interpreter’s proficiency. 
 
Ensuring that the correct flow physics of unconventional 
reservoirs is used, particularly when Darcy flow alone 
cannot explain all observations, remains an active issue. 
Merely adapting our conventional-interpretation models and 
tools to non-Darcy formations and new types of reservoirs—
although this might be sufficient to match the early-time 
data—does not guarantee that we can build a reliable 
representation of the reservoir that will lead to the optimal 
management of the available resource. This is especially 
true for complex reservoirs where the existence of 
heterogeneities and nonlinear processes can cause 
anomalous diffusion.  
 
Critical Knowledge and Experience To Be Preserved 
and Transferred 
Unlike DCA, which predicts future production performance 
from the extrapolation of an empirical decline relation 
selected on the basis of the observed production history, 
RTA is a process that requires an understanding of reservoir 
flow dynamics, including the underlying physical model, 
prevailing flow regimes under different well and reservoir 
conditions, and diagnostic features dictated by the physical 
properties of the system. Therefore, it is essential that the 
analyst is well-versed in the foundations of RTA, regardless 
of the varying practices and applications, and that expertise 
in RTA is not reduced to learning a software package or 
following a prescriptive workflow.   
 
The bounds of interpretation resulting from the duality of 
the physical model and the reality and the nonuniqueness 
inherent in the solution of the inverse problem (finding the 
cause from the response) also need to be recognized. In most 
cases, what distinguishes an experienced analyst is their 
understanding of the assumptions (physical and 
mathematical) of the model, applicability of solutions to a 
given geological context or scenario, options for using alternative models, and when to accept or 
reject the interpretation. Therefore, a significant portion of RTA experience can be learned by 
studying the foundations and fundamental concepts.  
 
An important feature of experience in RTA is the ability to recognize/resolve nonstandard 
behaviors, which requires that the analyst have extensive experience/knowledge of different 
environments. An analyst might develop this wisdom during their individual professional history, 

TAKEAWAYS 
It is essential to preserve the 
foundations of RTA in recognizing 
reservoir flow dynamics and 
identifying their corresponding 
diagnostics. Expertise in RTA should 
not be reduced to the ability to use a 
software package or follow a 
prescriptive workflow. 
 
Being able to understand the 
assumptions made in model 
development and the applicability of 
solutions to a given geological 
context or scenario is an essential 
element of RTA expertise that can be 
learned by studying the foundations 
and fundamental concepts of fluid 
flow in porous media. 
 
The experience of RTA experts  
in recognizing and resolving 
nonstandard behaviors, which  
is gained through experience/ 
knowledge of different environments, 
should be  
cataloged for transfer to the  
next generation of analysts. 
 
Understanding the confidence 
intervals of RTA and having the ability 
to assess the value of information 
obtained from the analysis should 
remain essential  
to RTA expertise.   
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but, if documented systematically, some of this wisdom could be converted to learnable knowledge 
and transferred to the next generation of analysts.   
 
One of the critical questions always associated with acquiring data and running tests is about 
confidence intervals and the value of information. Aside from the nonuniqueness and geologic 
uncertainty issues, RTA confidence intervals strongly depend on the quality of the data and the 
expertise of the analyst. RTA confidence intervals must continue to be constantly improved, 
through the development and deployment of more-sensitive gauges, increased attention to 
acquiring the correct data at the required quality, and the appropriate education of analysts. 
Similarly, the value of information obtained from RTA depends on many variables, such as the 
economic conditions, company practices, geology and characteristics of the reservoir, and 
geographic location. It is essential that understanding the confidence intervals of RTA and the 
value of information obtained from those analyses be considered integral parts of RTA practice 
and expertise. 
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Reservoir Engineering 
 

Introduction  
Our general perception of fluid flow in porous media, and its associated phenomenological 
relations such as Darcy’s law, inherently relies on the validity of the continuum hypothesis, the 
existence of a clear separation of scales, and the bulk fluid assumption. These assumptions 
warrant the perception of flow as bulk fluid transport and permit the volumetric averaging of 
process variables while imposing certain constraints and assumptions on rock properties and 
process parameters. Consequently, the conventional characterization of reservoir properties and 
the quantification of key process variables, as outlined in the Reservoir Characterization section 
of this green paper, are geared toward meeting the data needs of the models. From an even-
broader perspective, reservoir engineering is a hybrid specialty that integrates many concepts in 
the general realm of the physical sciences, math, and engineering. Over the past 150 years, this 
integration to meet the specific needs of oil and gas production from reservoirs has created a 
unique specialty, which now has an impeccable standing on its own. Although no formal 
partitioning of reservoir engineering into subdisciplines exists, in this section, the subject matter 
has been divided into six subcategories: fluid flow in porous media, phase behavior and PVT 
analysis, molecular- and pore-scale modeling, field-scale numerical reservoir simulation, 
enhanced oil recovery, and well performance. 
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Fluid Flow in Porous Media 
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Introduction 
Because of its apparent success in defining a rather-
complex transport phenomenon in a relatively simple 
velocity/pressure-gradient relationship, Darcy’s law is 
highly regarded and has shaped our perception and the 
modeling of fluid flow in porous media. Darcy flow, 
however, as described by Darcy’s law, is a highly 
conditional phenomenon that occurs within a small range of 
low Knudsen numbers (10−4 to 10−3) and is mostly satisfied 
in the ordered networks of micro- to macropores and 
fractures, meeting the continuum condition. Moreover, the 
additional assumptions made regarding the rock and fluid 
properties of a reservoir—mostly for the mathematical 
convenience of dealing with linear differential equations—
further limit the applicability of reservoir flow models. 
Although the use of numerical models removes some of 
these limitations by numerically approximating 
discontinuities caused by large-scale heterogeneity and 
nonlinearity as a result of pressure- and stress-dependent 
properties, at smaller scales of heterogeneity and lower flow 
velocities, a pore-scale and molecular-level modeling 
approach might be more appropriate.   
 
The pore structures of conventional and unconventional 
reservoirs have various scales of heterogeneity, which 
lead to multiple flow mechanisms at different scales. 
Using the prevailing conventional perceptions restricts 
our success in modeling and predicting flow and 
transport in heterogeneous media. In addition, the 
equations and parameters currently used in reservoir 
modeling are based on old-fashioned and constrained 
concepts, which hampers the effective management of 
challenging fields, such as carbonates, tight sands, and 
unconventional reservoirs, which are being developed 
more frequently today.  

TAKEAWAYS 
Conventional models of fluid flow in 
porous media are based on Darcy’s law, 
which assumes a continuum,  
bulk flow, and normal diffusion.  
 
The continuity equation is used to 
describe advective flow or convective 
transport and has been extended for 
multiphase flow. 
 
Muskat (1949) and Hubbert (1956) 
demonstrated that Darcy’s law could be 
derived from the Navier-Stokes equation 
of motion of a viscous fluid under the 
assumptions of no-slip flow in an 
effective continuum. 
 
Darcy’s law assumes that molecular 
interactions between the fluid and  
the solid surface are negligible. 
 
Non-Darcy flow at high velocities is given 
by Forchheimer’s expression  
and Knudsen flow at low velocities.  
 
Single-, dual-, and triple-porosity/-
permeability models were developed to 
capture heterogeneities such as fractures, 
vugs, and stratification. Geologic 
heterogeneities such as faults, flow 
barriers, and layers have usually been 
represented in terms of boundary 
conditions.  
 
Well surfaces have typically been 
modeled as the inner boundary of  
a flow domain. The sources and sinks 
representation of wells in the Green’s 
function solutions has enabled the 
development of a large suite of  
analytical models.  
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History, Background, and Original Concepts  
Although the microscopic, viscous flow of a Newtonian fluid in a pore network follows the 
fundamental principles of hydrodynamics, our conventional notion of fluid flow in porous media 
has been shaped primarily by the homogeneous or bulk-fluid-flow assumption of Darcy’s law, 
which assumes a continuum and normal diffusion. Henry Darcy (Darcy 1856) defined the 
volumetric flow per unit area in porous media using a linear, empirical relationship with the fluid 
potential. Combining mass balance, an equation of state, and Darcy’s law yields the governing 
differential equation (continuity equation) for advective flow in porous media. This approach can 
be extended to include a diffusion/dispersion component, and a pragmatic modeling approach is 
usually taken for multiphase flow, where Darcy’s law is applied to each flowing phase. 
 
Morris Muskat (Muskat 1949) and M. King Hubbert (Hubbert 1956) demonstrated that Darcy’s 
law could be derived from the Navier-Stokes equation of motion of a viscous fluid under the 
assumptions of no-slip flow in an effective continuum. Also inherent in Darcy’s law is the 
assumption that fluid flow can be defined on a local representative element away from the 
fluid/solid interface; that is, molecular interactions between the fluid and the solid surface are 
negligible. Using these assumptions, the motion of fluids in porous media has typically been 
modeled as the advective transport of a fluid mass with a bulk velocity. The repercussions of this 
assumption are partly alleviated in multiphase flow modeling by considering the capillary pressure 
and wettability effects on the relative permeability vs. fluid-phase saturation relationships.  
 
Non-Darcy flow regimes at higher ranges of velocity have been commonly dealt with using the 
second-order expression proposed by Forchheimer (1901). The other form of non-Darcy flow, 
which occurs at low velocities and was alluded to at the beginning of this discussion, was not of 
interest in the oil industry until the recent unconventional resource revolution.  

 
Petrophysical and fluid-phase (saturation) heterogeneity has typically been addressed by local 
averaging and local equilibria through a stretch of the continuum assumption, which has led to 
models such as dual-porosity and dual-permeability idealizations of fractured and stratified media. 
On the other hand, geological heterogeneity—such as faults, flow barriers, and layers—has been 
represented in terms of boundary conditions. Similarly, well surfaces have typically been 
considered to be the inner boundary of a punctured flow domain. An exception to this rule is the 
sources and sinks representation of wells in the Green’s function solutions to the diffusion equation 
(Gringarten and Ramey 1973; Ozkan and Raghavan 1991a, b), which has provided the basis for 
the subsequent development of a large number of solutions for important problems of interest. 

 
Current Status 
A fundamental understanding of the relationship between diffusion/conduction, convection 
(advection), and reaction in multiphase flow in porous media is essential for reservoir simulation and 
design and a scaleup of petroleum engineering recovery technologies. Accounting for the coupling 
between flow and geomechanics (the relation between permeability and stress tensor) is becoming 
increasingly relevant. Mathematical models describing these processes are obtained by combining 
the various conservation laws with the constitutive equations for rate processes. These models are 
typically comprised of partial differential equations (PDEs) and can be nonlinear in nature. 
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From a theoretical point of view, most dynamic problems  
are nonlinear phenomena; however, most of them are  
either treated as linear problems or they are linearized by 
making some assumptions. Nonlinearity can be caused  
by nonlinear sources/sinks (reactions), state-dependent 
physical/thermodynamic properties, the existence of 
multiphase flow coupled with thermodynamics, complex 
fluids, or boundary conditions. Coupling the processes at 
various time/length scales causes an additional complexity, 
which has led to the development of reduced-order modeling 
(Balakotaiah et al. 1985; Ratnakar and Balakotaiah 2011), the 
center manifold approach (Carr 1982; Mercer and Roberts 
1990; Balakotaiah et al. 1995), the method of moments (Aris 
1956), homogenization theory (Mikelić 2000), volume 
averaging (Whitaker 2013), and multigrid methods 
(Wesseling 1992). Because many unresolved scale and data 
issues still exist, modeling the resulting uncertainties, even at 
small scales, remains important.   

 
In the case of naturally fractured reservoirs, new formulations 
have been proposed that consider fractal geometry (Chang and 
Yortsos 1990; Sahimi and Yortsos 1990; Acuña and Yortsos 
1995; Flamenco-López and Camacho-Velázquez 2003; 
Camacho-Velázquez et al. 2008), which eliminates the 
assumptions used in the traditional dual-porosity model 
because the geological/geomechanical origins of most fracture 
systems do not justify them. In addition, a triple-porosity/dual-
permeability formulation has been proposed (Camacho-
Velázquez et al. 2005) that considers both a fracture network 
and a dissolution cavities network.  

 
In the past few decades, nonlocal, memory-dependent 
descriptions of flow and transport in anomalous diffusion 
models have gained notable popularity among scientists, 
engineers, and mathematicians focusing on physical 
scenarios of crowded systems, such as protein diffusion 
within cells or diffusion through highly heterogeneous, tight 
porous media. Unlike conventional perceptions, which focus 
on the petrophysical heterogeneity of porous media, 
anomalous diffusion models focus on velocity-field 
heterogeneity by introducing nonlocal and memory-dependent fluxes (Raghavan 2011, 2012). 
Anomalous diffusion models are of interest not only because of the heterogeneity caused by 
varying pore scales and the contrast between matrix and fracture characteristics in unconventional 
reservoirs (Albinali et al. 2016) but also because of the strong scale dependency of the phase 
behavior and the complex molecular-level interactions between fluid and solid molecules.  
 

TAKEAWAYS 
Accounting for the coupling between 
flow and geomechanics  
is becoming more relevant.  
 
Most dynamic problems are 
nonlinear phenomena; however, 
most of them are either treated  
as linear problems or they are 
linearized.  
 
Because many unresolved scale and 
data issues still exist, modeling the 
resulting uncertainties, even at small 
scales, remains important.  
 
The use of fractal geometry has been 
proposed for naturally fractured 
reservoirs.  
 
The anomalous diffusion concept, 
which focuses on velocity-field 
heterogeneity by introducing 
nonlocal and memory-dependent 
fluxes, offers an option to model 
production from tight, 
unconventional reservoirs and 
understand the mechanisms  
causing low recovery factors. 
 
There has been an explosion in  
the use of new, experimental 
techniques and modeling methods 
for the study of flow in porous 
media, but the uptake of these  
ideas has been modest.   
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In addition to increasing production from different 
types of fields—such as unconventionals, deep water, 
fractured carbonates, and tight sands—new, 
experimental techniques and modeling methods are 
being used to study flow in porous media. One 
example is the 3D imaging of pore spaces of rocks 
from the nanometer to the centimeter scale and the 
fluids within them, which enables an understanding 
of the structures and displacement processes in 
geological materials (Blunt 2017; Lin et al. 2019). 
Similarly, the availability and use of public domain 
codes have enabled the development of modeling 
methods to predict and interpret processes from the 
pore scale and greater, which has allowed a better 
physical understanding of transport and multiphase 
flow to emerge. Furthermore, the development of 
two-scale continuum models (Panga et al. 2005) for 
the reactive transport of Newtonian/non-Newtonian 
fluids in porous media has enabled the capture of 
pore-scale physics while significantly speeding up 
the simulations that lead to accurate and physically 
consistent numerical solutions.  

 
However, the uptake of these new ideas in the oil 
industry has been rather modest. Current field-scale 
simulators still use the traditional models of 
multiphase flow and transport that were developed 
more than 60 years ago, while core-analysis 
measurement techniques have not properly embraced 
the full potential of accurate 3D imaging. 
  
Evolving and Future Needs and Expectations 
The conventional assumptions used to simplify and 
linearize the diffusion equation are not very useful 
when the complexity of the system dictates the 
preservation of nonlinear features of the PDE. Thus, 
it will be necessary to explore the use of different 
basic techniques that can be applied or adapted to the 
study of many nonlinear PDEs of the parabolic type. 
This could include exploring the use of averaging 
techniques to develop low-dimensional models that 
are easier to analyze and capture the essential physics 
at smaller scales. The representation of such models 
in a form that retains the physics while speeding up 
the numerical computations is a necessity.  

TAKEAWAYS 
Due to the increased complexity of 
reservoirs, the approximate linearization of 
mathematical models is not always 
warranted. To preserve the key nonlinear 
features of physical systems, simplified 
and/or multiscale reduced-order modeling 
and appropriate averaging techniques  
are needed.  

Nontraditional concepts, such as anomalous 
diffusion, should be considered to enhance the 
modeling of unconventional flow phenomena 
caused by heterogeneity, variations in phase 
behavior, and molecular-level interactions. 
However, interpreting  
and quantifying the model’s parameters in 
terms of the characteristics of the system are 
important.  

Molecular models or the data fitting of 
experimental or field measurements are 
required to quantify the anomalous diffusion 
parameters, which represent long-range 
interactions and the memory dependence  
of the movement of fluid particles. 

High-resolution imaging and pore-scale 
analysis and modeling need to be combined 
with conventional special core analysis 
workflows. 

Physics-based modeling should be 
supplemented by machine-learning techniques 
to incorporate different sources of information 
at all scales and to uncover existing patterns. 

A broad understanding of transport in porous 
media should be developed  
before simplifications are made for  
specific conditions. 

Industry could take note of the theoretical and 
experimental developments in hydrology, flow 
in porous media, and chemical engineering. 
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Interest in anomalous diffusion models raises some 
questions about the physical interpretation and quantitative 
characterization of constitutive relations. Unlike 
permeability or the diffusion coefficient used in the flux 
relations of normal diffusion, the phenomenological 
coefficients of anomalous diffusion represent long-range 
interactions and the memory dependence of the movement 
of fluid particles. Complex molecular models (Coskuner  
et al. 2017) or the data fitting of experimental or field 
measurements (Holy and Ozkan 2016; Chu et al. 2019, 
2020) are required to quantify the anomalous diffusion 
exponent, which delineates the deviation from normal 
diffusion, and estimate the phenomenological coefficient, 
which is the counterpart of permeability in Darcy’s law. 
However, an apparent dilemma of this approach is that the 
understanding and definition of the physical phenomena 
occur at the molecular level, but the application is 
inevitably on a much-larger field or simulation scale. This 
calls for the upscaling of the system properties determined 
by physical characterization, but with the lack of 
continuum, conventional volumetric averaging approaches 
are not warranted.  

 
The industry should consider combining advanced 3D 
imaging with routine and special core analyses to provide 
a more-robust and physics-based characterization of rock 
samples from the pore scale and greater. It is also important 
to couple physics-based modeling with advanced machine-
learning techniques (such as artificial neural networks with 
deep learning and random forest algorithms) to incorporate 
different sources of information and to uncover existing 
data correlations. Such couplings can be used to identify 
the missing data in predicting those characteristics (such as 
relative permeability and wettability) that are crucial for 
studying multiphase flow in porous media and whose 
estimation can be largely uncertain (Zhao et al. 2019). 

 
From a broader perspective, because of new interests in and 
applications of reservoir engineering and sciences, it is 
necessary to incorporate the advances in the understanding 
of fluid flow into reservoir models and numerical 
simulators. The current approach is to enforce a simplified 
model based on a limited perception that is applied to a 
broad and diverse range of physical flow conditions. Instead, a broad understanding of transport 
in porous media should be developed first, after which simplifications can be introduced that are 
based on the scales and internal dynamics of the system. The industry could take note of the 

TAKEAWAYS 
A broad understanding of flow in 
porous media must be preserved, 
and an awareness of the underlying 
assumptions of conventional and 
new flow  
models should be maintained. 
 
The basis for and limitations  
of upscaling the physical and 
chemical conditions of pore-
scale/molecular-level phenomena to 
the macroscopic perceptions  
of flow and the corresponding 
constitutive relations should be 
preserved as an essential part  
of the theory. 
 
The experience and skills to construct 
mathematical statements of physical 
flow phenomena in complex porous 
material should be preserved. 
Understanding of the 
correspondence between physical 
and mathematical descriptions of 
flow must be emphasized. 
 
An appreciation of the need for  
and the differences between 
analytical and numerical approaches 
for flow modeling should be 
preserved; having the skills to use 
both approaches when needed 
should be encouraged.  
 
Awareness of conventional and 
contemporary computational 
methods of fluid-flow models should 
be maintained. 
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theoretical and experimental developments in hydrology, flow in porous media, and chemical 
engineering, most of which have not been published in the specialized petroleum literature.  
 
Critical Knowledge and Experience To Be Preserved and Transferred 
Our understanding of flow in porous media has evolved over decades. It is important that expertise 
and knowledge is retained, with a full appreciation of the different processes occurring at different 
scales and the assumptions underlying conventional and new flow models. The approximations 
made in upscaling the physical and chemical conditions of pore-scale/molecular-level phenomena 
to macroscopic descriptions of flow and the corresponding constitutive relations should be 
appreciated and understood. Coupled with this, the experience and skills needed to construct 
mathematical statements of physical flow phenomena in complex porous material should be 
preserved. In terms of the new concepts and approaches, such as the fractional and fractal 
approaches and the anomalous diffusion concept, understanding of the correspondence between 
physical and mathematical descriptions needs to be emphasized.   
 
Even though numerical models are increasing in speed, accuracy, and sophistication, there 
continues to be a role for analytical approaches, especially as benchmarks to validate simulations 
and interpret behavior. This is true for both linear and nonlinear processes, and new mathematical 
developments could provide appropriate tools to obtain solutions for nonlinear problems in 
particular. Engineers and scientists need to be able to apply both analytical and numerical tools 
where appropriate. 
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Introduction 
Fluid properties are needed during the entire exploration and production life cycle, from 
exploration to mature asset management to enhanced oil recovery (EOR) and improved oil 
recovery (IOR). However, as projects mature, the need for pressure/volume/temperature (PVT) 
data and their integration and interpretation varies depending on reservoir performance. Future 
needs for fluid-related information are also highly related to the options (such as IOR/EOR and 
various well treatments) to be used and/or studied. In some cases, additional fluid information 
obtained during the surveillance/development phase can contain symptomatic information related 
to initial reservoir conditions (reservoir initialization) and confirm initial assumptions regarding 
reservoir connectivity. 
 
Ideally, we want to determine and/or predict the phase behavior, transport properties, and 
interactions of mixtures that contain many hundreds of components. Therefore, we need to address 
the following questions/challenges for the entire life cycle of a reservoir: 

• How can we obtain the correct specimen/sample? 
• How do these fluid systems flow, and how do we recover them?   
• What are the best practices for recombining a sample to create a representative reservoir 

fluid? 
• What are the minimum data requirements to define a system for a process or processes? 
• What is the minimum granularity needed for various workflows and computational 

techniques? 
• How do we confirm an equation of state (EOS) is representative of the actual fluid? 
• How does continuous monitoring of the produced-fluid composition help improve our 

understanding of reservoir fluid behavior, especially during EOR operations (e.g., during 
gas or solvent injection)? 

• How does our improved understanding of phase behavior affect project design and health, 
safety, security, and environment concerns? 

• What is the overall financial impact of the fluids on the integrated workflow?  
• If we did not have a physical fluid sample and/or various constraints—including time and 

import/export restrictions—what would be the realistic alternatives to using a fluid sample? 
 
History, Background, and Original Concepts 
Phase equilibria describe the behavior of fluids in nature, including that of the hydrocarbons that 
we extract from reservoirs. In the petroleum industry, the thermodynamics of phase equilibria 
address the following question: “Under a given temperature and pressure and mass of components, 
what are the amounts and composition of the phases that result?” (Kovscek 1996). Understanding 
reservoir fluids starts with the acquisition of a fluid sample from a reservoir and continues with 
laboratory measurements to observe and measure basic properties of the fluid, such as fluid 
composition, formation volume factor, viscosity, and saturation pressure as a function of pressure 
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and temperature. Until approximately the 1960s, using 
experimental data was the only method to obtain the 
required basic information, and in many cases, the 
information was oversimplified because of the limitations 
of the enabling technologies. For example, it was very 
common to assume homogeneous fluid distribution (one 
uniform composition residing in the reservoir).  
 
In terms of multidisciplinary integration, reservoir 
performance, and fluid management, particularly during 
the past two decades, measurements in the laboratory 
domain have become more standardized. This was 
expected to occur because the measurements themselves 
became increasingly automated and also because more-
commoditized hardware became available in the market. 
With the advances in desktop computing and/or the 
accessibility of computational power, industrywide 
integration efforts became a practical reality. Even though 
the laboratory measurements have been standardized, 
collecting hydrocarbon samples that are representative of 
the reservoir fluids has always been a challenge and 
influences the reliability of the measurements in 
representing the reservoir fluid.  

 
The laboratory procedures measuring basic properties in 
PVT cells to reflect the bulk properties of the fluids are well-
established. However, they lack the inclusion of 
confinement effects and other forces, such as capillary and 
surface forces, which can dominate the phase equilibrium in 
the small pores that we encounter in unconventional 
reservoirs. Phase equilibria are represented mathematically 
by an EOS, which typically is a cubic equation solved for its 
roots to determine gas- and liquid-phase properties at the thermodynamic equilibrium and referred 
to as a flash calculation. EOS parameters are calibrated to match the laboratory measurements. 
Having a mathematical description of a fluid enables us to incorporate the fluid properties into a 
compositional flow simulator and help optimize the oil processing and separator design. 
 
Reservoir fluid sampling has not been a standard practice in the oil industry. In the absence of oil 
samples and proper laboratory measurements, simple API gravity values and the produced gas/oil 
ratio have been used to characterize the fluids using established correlations. These correlations 
are empirical and naturally representative of the oil samples from which they were generated. For 
example, Standing’s PVT correlations were generated using 22 different oil/gas mixtures from 
California oil samples (Standing 1947). A variety of correlations have been developed for different 
oil samples from different basins. Using these correlations for oils that are completely different in 
nature and have different compositional fluids is not a great practice but has been necessary 
because of the lack of data.   

TAKEAWAYS 
In our industry, thermodynamic 
principles are applied to phase-
equilibrium calculations to determine 
the amounts and composition of each 
phase under a given pressure and 
temperature.   
 
Understanding reservoir fluid 
properties starts with the collection of 
reservoir fluid samples. While 
measurement techniques have 
improved and been standardized, 
collecting a representative fluid sample 
is still a challenge. 
 
EOSes have been used to represent 
phase behavior. They solve for fluid 
properties using flash calculations and 
need to be calibrated to match 
laboratory measurements.   
 
In the absence of fluid samples and 
laboratory measurements, simple 
correlations have been used. 
 
Improved understanding of fluid phase 
behavior is critical for many EOR 
applications.  
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It is challenging to acquire unaltered in-situ samples in unconventionals because of the extremely 
low fluid mobilities arising from nanodarcy-level permeabilities and potential confinement effects. 
Our ability to change the fluid phase behavior through gas injection to recover more oil 
economically from unconventionals depends on the accuracy of our understanding of the complex 
fluid system in the reservoir. 
 
Current Status 
New developments can primarily be categorized into the following six areas: multidisciplinary 
integration, reservoir performance, and fluid management; artificial intelligence (AI), machine 
learning (ML), and data-driven predictive analytics, which is covered in the Data Analytics, 
Artificial Intelligence, and Machine Learning section of this green paper; molecular simulation 
and the acceleration of flash algorithms; hardware design; unconventional reservoirs (shales and 
tight/low-permeability gas and oil reservoirs); and complex fluids and reactive systems, including 
carbon dioxide (CO2) EOR and CO2 sequestration. 
 
Multidisciplinary integration has forced the experts in different disciplines to make their processes 
compatible, especially in the context of providing data from one discipline to another, leading to 
cooperative action at even the most-basic level. A classic example is how we acquire a fluid 
sample; we consider the needs of multiple disciplines in advance so that we can share the needed 
information with each other in a more-coherent manner. That is, all data are generated in a 
compatible manner from the same batch of fluids. 

 
As outlined in Dindoruk (2019) and Hursan et al. (2016), recent advances in downhole fluid 
measurements are providing better control of oil-based mud (OBM) contamination and opening 
possibilities for enhanced geological understanding through refined fieldwide compositional 
variations. However, the majority of PVT samples are still being analyzed in laboratory settings 
and tests. The quality of collected samples is affected by poor well conditioning and the invasion 
of nonreservoir fluids or drilling fluids (OBM) (Altowilib et al. 2019). The ultimate goal is to 
collect a representative sample.  

 
The concept of molecular simulation is not new, but we finally have the needed computational 
power at our fingertips, at least for certain types of problems. Although significant progress has 
been made using simple compounds or pure or binary systems, our problems are still extremely 
complex (because of variations in pressure, temperature, and the compositions that we encounter 
in reservoirs). Molecular-dynamics simulations are performed to study the behavior of 
ensembles of molecules that are hard to investigate using experiments. For example, molecular 
simulations could help to study the properties of a material that cannot be isolated easily or those 
of dangerous materials, and it is a good substitute for experiments that require high-temperature 
and high-pressure environments. Thus, molecular simulations can be used as a complement to 
experiments (Allen 2004). More effort to understand the impact of the sample size used in the 
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molecular simulations on outcomes should help increase the 
accuracy of the results and numerical efficiency (Coskuner 
et al. 2017).   

 
There are two main fronts in advances in hardware design. 
Much progress has been made in laboratory systems. At the 
present time, the range of fully automated PVT cells and 
viscometers reaches pressures of more than 30,000 psia. 
Some classical visual PVT cells can reach temperatures of 
570°F at moderate pressures (3,000 psia). In addition, some 
visual micromodels have expanded pressure ranges, which 
now exceed 20,000 psia. Significant progress has been made 
in two areas: P-T (pressure/temperature) and volume 
requirements. Progress in both is needed for modern PVT 
analysis because many deepwater developments are at very 
high P-T ranges, and acquiring large sample volumes can be 
quite expensive or risky. Therefore, reducing the required 
volumes for key measurements has wider implications, from 
reducing cost and time to widening the envelope for various 
experiments that might not otherwise be possible. 

 
Current industrial practice for PVT analysis is based on 
modeling only fluid/fluid interactions while neglecting 
fluid/solid interactions. This assumption is valid for 
conventional systems because pore sizes are relatively large 
compared to the length of the mean free path of fluid 
molecules. However, fluid/solid interactions play an 
important role in unconventional reservoirs where pore sizes 
are comparable to that of the fluid mean free path. For this 
reason, phase behavior and fluid properties in 
unconventional reservoirs could deviate significantly from 
their bulk values (Firincioglu 2013). This is often referred to 
as the pore proximity effect or the pore confinement effect. 
Such an effect is more pronounced when the pore size is 
smaller than 10–15 nm.  
 
For a long time, there was a lack of experimental data to 
check the validity of the various proposed theoretical models 
(which provided significantly different results) for these 
systems. A closer look at Bhatia et al. (2004), Fadaei et al. 
(2011), Devegowda et al. (2012), Dhanapal et al. (2014), and 
He et al. (2016) indicates that not all forces are considered in many of these theoretical models. 
Some of the calibration data that are based on molecular simulation results are not interpreted in 
the same manner as they were correlated with the series of hydrocarbon compounds.  
 

TAKEAWAYS 
In recent years, multidisciplinary 
integration has forced experts to 
make their processes compatible. 
 
Recent advances in downhole  
fluid measurements provide better 
control of OBM contamination  
and open possibilities for enhanced 
geological understanding through 
detailed fieldwide compositional 
variations. 
 
Molecular simulations could help to 
study the properties of a material that 
cannot be isolated easily or those of 
dangerous materials, and it is a good 
substitute for experiments that 
require challenging conditions. 
 
High-pressure, high-temperature 
measurements, including the 
acquisition of visual information 
through micromodels, represent  
an advance in hardware design.   
 
Significant progress has been  
made in the area of phase behavior in 
nanoconfinement using microfluidic 
chips, but these measurement 
techniques are not  
yet widely used in the industry.  
 
Advanced EOSes—such as  
PC-SAFT, interaction-of-polar-
component modeling, and 
association models—are being  
used for complex fluid systems.  
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Recently, significant progress has been made in the area of 
phase behavior in nanoconfinement using microfluidic chips 
(Parsa 2017). This was a reality check for many of the 
proposed models in the context of determining the phase 
behavior in the nanopores encountered in unconventionals. 
Noninvasive measurement techniques are also being 
developed to improve the accuracy of these measurements 
(Kamruzzaman et al. 2019).  

 
Because we deal with complex fluids and reactive systems 
in many reservoirs, decision making involves structural and 
dynamic reservoir, well, and production facilities modeling. 
We incorporate fluid behavior into these models by 
describing the fluids using an EOS. However, because we 
are encountering increasingly complex fluid systems (in 
terms of integrated system modeling), we are forced to make 
use of nonclassical cubic EOS models in our computations. 
For example, in asphaltene modeling, the PC-SAFT 
approach is used. Similarly, interaction-of-polar-component 
modeling is used for the partitioning of CO2 in water 
(Venkatraman et al. 2017). Water-partitioning 
solvents/species, cubic-plus association or association 
models (Ratnakar et al. 2017), and asymmetrical mixing 
rules such as Huron-Vidal have found wider acceptance in 
the industry. In recent years, significant steps have been 
taken to run flash algorithms faster and even run them on 
graphics processing units (Shiozawa et al. 2018). 
 
Evolving Needs and Future Expectations 
Current and future developments in AI, ML, and data-driven 
predictive analytics have significant potential to advance the 
analysis of petroleum fluid properties by means of 1) 
increasing representative volumes of data, 2) improving the 
quality and reliability of data, and 3) learning nonintuitive but 
meaningful data representations. In instances where collected 
fluid samples are scarce (as a result of, for example, 
prohibitive costs or unfavorable conditions for acquisition), 
solutions are needed to characterize reservoir fluids for PVT 
modeling and their subsequent integration into numerical 
reservoir models. Statistical and ML techniques that are based 
on, for example, nonparametric and multivariate regression 
algorithms [e.g., support vector regression and kernel ridge 
regression (Onwuchekwa 2018)], functional networks (Baarimah et al. 2015; Oloso 2018) or physics 
informed/hybrid systems, or superlearners (Yang et al. 2019; Sinha et al. 2020, 2021) can effectively 
predict PVT data—such as saturation pressure, formation volume factor, mixture density, oil 
viscosity, and the gas/oil ratio—for missing samples. Moreover, advanced unsupervised learning—

TAKEAWAYS 
Current and future developments 
in AI, ML, and data-driven predictive 
analytics have significant potential to 
advance the analysis of fluid 
properties. 
 
Data-driven or physics-informed 
data-driven modeling could represent 
a viable alternative to empirically 
derived correlations to predict 
reservoir fluid properties. 
 
An ongoing effort is the industrywide 
acceleration of flash algorithms and 
various relevant techniques that are 
coupled with conventional reservoir 
simulators, yet this task is becoming 
more challenging as the fluids and 
models become more complex. 
 
Conventional PVT models are 
inadequate for predicting fluid 
behavior in nanometer-size pores. For 
fluid analysis in such systems, the use 
of miniaturization and 
microfluidics/nanofluidics, and the 
need for extremely small sensors and 
transducers are increasing steadily. 
 
Significant progress is also being 
made in the area of fluid sampling. 
 
Some miniaturization efforts and 
scaled-down lab-on-a-chip-type 
initiatives could lead to the bringing 
of the laboratory to the sandface.  
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such as multidimensional scaling or self-organizing maps (Dossary et al. 2016)—can be used to 
identify regionalized and compartmentalized reservoir areas on the basis of PVT signatures and/or 
(dis)similarities in fluid attributes. Data quality and overfitting are still part of the key challenges for 
the application of ML to correlation development (Yang et al. 2019).   

 
While empirically derived correlations, such as EOSes, have been routinely used to predict reservoir 
fluid properties, data-driven modeling could represent a viable alternative. For example, a family of 
ML models can be trained with a resemblance of multivariate sample attributes to predict and 
optimize decontamination techniques, such as well conditioning, near-wellbore cleanup, skimming, 
and subtraction. Various mainstream multivariate regression algorithms can perform such tasks, 
including collaborative filtering (Onwuchekwa 2018). However, the most-significant 
accomplishment, which has been driven by the developments in deep learning on large-scale 
networks and graphs, has been the incorporation of meaningful representations of PVT data in 
integrated reservoir studies and reservoir simulation modeling. When reservoir simulation models 
are abstracted by networks and/or graphs, the field-scale representations and embeddings of PVT 
properties associated with network nodes could be learned by studying network connectivity, node 
adjacency, and network dynamics in a fraction of the time currently required to predict reservoir 
fluid movement using reservoir simulators.  

 
An ongoing effort is the industrywide acceleration of flash algorithms and various relevant techniques 
that are coupled with conventional reservoir simulators. Although progress has been somewhat slow 
and steady, it remains an important endeavor because the problems that are being worked on are 
becoming increasingly challenging (more grids, more components, more geological complexity, and 
a desire for real-time decision systems). Significant progress is also being made in the area of fluid 
sampling, including sampling at various depths at one time and measuring selected in-situ fluid 
properties in real time. Most in-situ measurements are performed using indirect proxy measurements, 
such as through the use of optical techniques (e.g., downhole fluid analysis by means of optical density 
measurements), rather than through an actual pressure/volume expansion/compression 
implementation. Some miniaturization efforts and scaled-down lab-on-a-chip-type initiatives could 
lead to the bringing of the laboratory to the sandface (Fadaie et al. 2011; Xu et al. 2017).  

 
Conventional PVT models tend to be inadequate for predicting fluid behavior under the influence 
of pore proximity for nanometer-size pores. Clearly, greater precision and extremely small sensors 
and pressure-control devices are needed for such measurements. The role of miniaturization and 
microfluidics and nanofluidics in fluid analysis is increasing steadily. The need to modify flash 
algorithms and EOSes for confinement has been demonstrated in many papers, but the industry 
has not yet adopted these improvements in its applications. Flash algorithms and EOS 
characterizations should be modified to reflect the other forces present in confinement. Filtration 
is another complication observed in experimental work for nanoporous media. Preferential flow 
of smaller components through nanoporous rocks should also be understood and factored into the 
fluid composition distribution in the reservoir and produced-fluid stream. EOR is a method of 
accessing the oil left behind in unconventional reservoirs. Thus far, gas-injection huff ’n’ puff is 
the only EOR technique that has been proven to work for these reservoirs. Reservoir fluid property 
changes—such as an increase in formation volume factor as the gas dissolves in oil, the 
evaporation of lighter-oil components into the gas changing the liquid content of the gas, and 
extractive power/miscibility—are the reasons for the improved oil recovery. The industry should 
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invest in measurement techniques specifically for 
unconventional reservoirs that can address how the gas 
is interacting with oil in these nanoporous rocks and 
how we can optimize EOR accordingly. 
 
Critical Knowledge and Experience To Be 
Preserved and Transferred  
As experienced professionals leave the industry, 
especially during downturns, our industry loses skills 
that are critical to the success of oil and gas exploration 
and production, which means that we reinvent the 
wheel after each downturn and we waste resources. 
With the advancements in computing, new engineers 
tend to be very good at calculating results yet lack 
fundamental understanding of the underlying physics 
to interpret them.  
 
Some academic knowledge is critical to understand the 
impact of fluid characteristics, such as formation 
volume factor and the gas/oil ratio, on production 
performance. For example, greater formation volume 
factors provide more energy and more hydrocarbon 
production. When a reservoir reaches the saturation 
pressure, gas comes out of the solution, reducing the 
energy of the oil. Meanwhile, because gas mobility is 
much greater than that of oil, free-gas production also 
reduces the oil production. Developing such 
fundamental understanding of the dynamics of flow in 
a reservoir, which combines physics with practical 
knowledge, will help engineers assign a value to the 
fluid data and associated information and could help 
fluid characterization become a necessity rather than a 
scientific exercise.  
 
When experimental data will be used to create an EOS 
for the mathematical representation of the fluid 
behavior, the meaning of EOS parameters such as 
critical pressure and temperature should be well-
understood. During the regression of these parameters, 
merging nonphysical parameter values to obtain a match 
with the experimental values should be prevented. 
Proper component lumping for different fluid systems is 
also essential knowledge to obtain an EOS with a 
practical number of components. Information on how to 
use different software packages to develop EOS models 
and when to use other approaches (in combination or 

TAKEAWAYS 
New engineers must have a fundamental 
understanding of the underlying physics to 
interpret their calculated results. 

The development of a fundamental 
understanding of fluid behavior that 
combines knowledge of physics with the 
dynamics of flow and well performance will 
increase appreciation of the importance of 
fluid data.  

Understanding EOSes and EOS parameters, 
data-driven models, and correlations and 
having an ability to switch between various 
approaches  
are necessary skills to master.  

A multidisciplinary approach to define 
compartmentalization and how to use fluid 
data in that context is required. 

Physical understanding of how  
the P-T diagram shifts and how PVT 
properties change during gas injection, 
coupled with the concepts of miscibility 
and the dynamics of the mechanisms that 
enable improved oil production,  
is also needed.   

Graduating students should understand the 
implications of fluid characterization and 
how it can be used in petroleum 
engineering applications in a 
multidisciplinary fashion. 

Understanding the role of fluids and 
treating the mineral/mineral surfaces as 
part of the phases can lead to a better 
definition of wettability, which has large 
implications, from EOR to carbon capture, 
utilization, and storage.  

Students should understand the bulk 
nature of typical PVT measurements  
and the changes in fluid behavior in 
confinement. 
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alone), such as correlations and data-driven models, is also critical. The uncertainties, assumptions, 
and limitations for each approach used should also be well-understood.   
 
Defining different fluid compartments or equilibrium/disequilibrium grading using fluid 
characteristics is an important multidisciplinary application of fluid behavior. In this case, fluid 
characteristics are combined with information from structural geology, petrophysics, 
geochemistry, stratigraphy, and production to determine the compartmentalization in the field.   
  
One critical piece of information is how the phase behavior changes in the presence of solvents 
such as CO2 or hydrocarbon gases during EOR or CO2 storage. Physical understanding of how the 
P-T diagram shifts and how PVT properties change during gas injection is essential to decipher 
the mechanisms that enable improved oil production.  
 
Understanding the implications of fluid characterization and its multidisciplinary use in petroleum 
engineering applications—such as in facility design, flow assurance, supporting some of the 
geological realizations in combination with pressure transient analysis and reservoir modeling—
would be a big advantage for graduating students. Understanding the role of fluids and treating the 
mineral/mineral surfaces as part of the phases could lead to a better explanation for wettability, 
which has large implications, from EOR to carbon capture, utilization, and storage. For 
unconventional plays, students should understand the bulk nature of typical PVT measurements 
and the fundamentals of changes in fluid behavior in confinement.   
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Introduction 
Reservoir simulations have traditionally modeled macroscopic flow phenomena, which are 
observable at the continuum scale, in conventional reservoirs with micron-sized pore and pore-
throat structures. The parameters used in these simulations are typically averages of pore-scale 
properties. Flash calculations yield phase compositions and volumes that are identical to those 
obtained in the absence of porous media.  
 
In unconventional reservoirs, the effects of interfacial tension and the contact angle on multiphase 
flow become more pronounced. Flash calculations yield different compositions and volumes in the 
presence of interface curvature. As the pore size shrinks toward the nanoscale, pore structures and 
fluid compositions become more complex and discontinuous; flow and transport mechanisms 
cannot be modeled under the continuum assumption, and macroscopic transport models need to 
consider the pore-space constraints. The solids also significantly influence the state of the fluids 
in nanoscale pores. In the smallest pores, distinct fluid phases disappear, and fluids transition into 
molecular mixtures. 
 
Molecular- and pore-scale models and simulations are used to characterize the state of the fluids, 
fluid/surface interactions, flow and transport in pores, and the responses of fluids and porous media 
to stress, electric potential, and nuclear magnetic resonance (NMR). They complement petrophysical 
measurements of capillary pressure, relative permeability, geomechanics, resistivity, and NMR. 
 
Molecular modeling is used to understand the internal structure of fluids at the molecular level that 
results from fluid/fluid and fluid/wall interactions in a pore. Because of computational limitations, 
these studies are often limited to fluids in single nanopores. An important element of digital core 
analysis (DCA), pore-scale modeling is a numerical approach used to understand the mechanics 
of fluid/fluid and fluid/solid interactions, typically at a scale that encompasses many pores.  
 
In unconventional tight-oil and -gas reservoirs, as fluid/surface interactions become important and 
the pore size begins to reach the limit of the fluid continuum, molecular dynamics becomes the 
appropriate computational approach.  
 
History, Background, and Original Concepts 
Two pore-scale modeling approaches are used for flow and transport in porous media. Direct numerical 
simulation (DNS), not to be confused with DNS in turbulent flow, directly uses a representation of the 
pore space as the simulation grid. Different approaches can be used to simulate the same physics. While 
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direct simulation is conceptually straightforward, it is 
computationally expensive, particularly for complex porous 
media with pore sizes that vary by many orders of magnitude. 
 
The second approach, called pore-network modeling 
(PNM), was first introduced by Fatt (Fatt 1956a, b, and c) 
and idealizes the complex network of connected pore bodies 
and throats as simplified elements and treats fluids in these 
elements as continua. PNM uses networks extracted from a 
representation of the 3D pore space that have assigned rules 
to approximate flow and transport in porous media (Celia et 
al. 1995; Berkowitz and Ewing 1998; Blunt 2001; Joekar-
Niasar and Hassanizadeh 2012). These models have 
recently grown in sophistication and can now handle a 
variety of different physical conditions and processes. 

 
For molecular modeling, two numerical methods are used: 
molecular dynamics (MD) simulation and Monte Carlo (MC) 
simulation. MD simulation simultaneously computes the 
trajectories of all the fluid molecules in a pore by numerically 
solving Newton’s equations of motion on the basis of the forces 
present among the fluid molecules and atoms that make up the 
pore walls and their potential energies. Because the simulation 
involves a many-body problem, rather than simple two-body 
problems, these simulations are limited to relatively simple 
single-pore models, and they often capture the dynamic 
behavior for only a short time (< 1 nanosecond). MC methods, 
on the other hand, rely on equilibrium statistical mechanics. 
These methods generate an ensemble of molecules in the pore 
according to the Boltzmann distribution rather than their 
dynamic behavior. MC methods have been used to study the 
storage of hydrocarbon fluids under thermodynamic 
equilibrium (Bui and Akkutlu 2017), whereas MD simulations 
have been used for both storage and transport studies (Ambrose 
et al. 2012; Riewchotisakul and Akkutlu 2016).  
 
In many cases when constructing a digital core, pore sizes 
range over several orders of magnitude, and despite 
advances in imaging, it is not possible to generate a fully 
resolved image of a rock. As a result, a suitable multiscale 
model that couples different scales in a realistic manner and 
allows for the reproduction of realistic results needs to be 
used (Bultreys et al. 2015; Nie et al. 2015; Suhrer et al. 
2020). Features that are not geometrically resolved on the 

TAKEAWAYS 
DNS, one of two pore-scale modeling 
approaches, directly uses a 
representation of the pore  
space as the simulation grid;  
it is straightforward but computationally 
expensive. 
 
The second approach for pore-scale 
modeling is PNM, which idealizes the 
complex network of connected pore 
bodies and throats as simplified 
elements and treats fluids in these 
elements as continua.  
 
MD simulation is one of two numerical 
methods used for molecular modeling, 
and it is limited to a relatively simple 
single-pore model that often captures 
the dynamic behavior for only a short 
time. 
 
The second method used for molecular 
modeling is MC simulation, which 
generates an ensemble of molecules in 
the pore according to the Boltzmann 
distribution rather than their dynamic 
behavior.  
 
When constructing digital cores, a 
suitable multiscale model that couples 
different scales in a realistic manner and 
allows for the reproduction of realistic 
results needs to be used. 
 
Determining from where to take rock 
samples, the resolution at which to 
image them, and a REV for single-phase 
and multiphase problems are necessary 
tasks in building a digital-rock model. 
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finest image scale have to be modeled, including pore-wall 
roughness, the occurrence of oil/water films, advancing 
and receding contact angles, and other nanoscale effects. 
Another important task is to transfer the dominant physical 
effects that are present on certain scales to other scales 
using appropriate computational models. 
 
The first task in obtaining a 3D image of a rock (a digital-
rock model) is to determine from where to take rock 
samples and the resolution at which to image them to make 
the simulations relevant. One might start with logs, whole 
core, plugs, sidewall core plugs, rock fragments, or 
cuttings. Software and tools, which are often based on 
machine-learning approaches, are available for clustering 
and selecting samples from log data and texture and fabrics 
classification. Another important task for building relevant 
models is to determine a representative elementary volume 
(REV) for single-phase (Hilfer 1992; Biswal et al. 1998; 
Saxena et al. 2018) and multiphase problems (Mu et al. 
2016). Different properties (e.g., porosity, permeability, 
conductivity, capillary pressure, relative permeability) also 
require different REV sizes. 
 
Current Status 
Over the past 20 years, the ability to perform simulations below the porous-media continuum scale 
has greatly advanced as a result of developments in imaging technologies, simulation methods, 
and high-performance computing. We expect that as the production of the remaining conventional 
and new unconventional hydrocarbon resources becomes more challenging, there will be a 
pressing need to refine our understanding of fluids in pores and our interpretation of petrophysical 
measurements. Digital core and modeling will be important tools for meeting such needs.  

 
Direct simulations of fluid flow governed by the Navier-Stokes and Brinkman equations can now 
be carried out straightforwardly using established computational fluid dynamics methods. Single-
phase permeability values derived from such simulations are now well-accepted, provided that the 
pore spaces used in such simulations are representative and well-resolved; single-phase 
conductivity values based on the solution of the diffusion equation can also be obtained in a reliable 
manner. Zhao et al. (2019), which used an artificial porous medium and included extensive 
experimental data for pore-scale two-phase flow in different regimes and numerical simulations, 
has been very helpful in judging the efficiency of different numerical approaches. Many imaged 
experimental saturations under various conditions and in a variety of sandstones and carbonates 
have been published at the Digital Rocks Portal (Prodanović et al. 2015). 
 
Molecular simulations have been carried out in single pores and in 3D pore models to obtain 
insights into pure and multicomponent fluid behavior under nanoconfinement (Falk et al. 2015; 
Bui and Akkutlu 2017; Zhu et al. 2020; Coskuner et al. 2021). These simulations highlight large 
compositional variations across the width of a nanochannel or the diameter of a nanopore, which 

TAKEAWAYS 
As the production of hydrocarbon 
resources becomes more challenging, 
there will be a pressing need to refine 
our understanding of fluids in pores 
and our interpretation of petrophysical 
measurements. 
 
Direct simulations of fluid flow 
governed by the Navier-Stokes  
and Brinkman equations can now be 
carried out straightforwardly using 
established computational fluid 
dynamics methods. 
 
Molecular simulations have been 
carried out in single pores and in 3D 
pore models to obtain insights into 
pure and multicomponent fluid 
behavior under nanoconfinement. 
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can cause pore-size-dependent average density and 
viscosity and the separation of components during 
transport in unconventional reservoirs. 
 
Evolving and Future Needs and Expectations 
Although much progress has been made, many gaps 
still need to be filled. A fundamental challenge is the 
dynamic incorporation of subscale phenomena, 
which still requires multiscale integration. There is 
also a need to combine well-designed experiments 
and digital simulations to obtain effective parameters. 
Ultimately, we want to build multiscale features of 
fluids and porous media into common PNM or DNS 
frameworks and then use them to efficiently upscale 
to assist core-scale analysis and reservoir simulations.  
 
Specific methods have their challenges, though. Using 
DNS for multiphase flow or complex fluids (such as 
foams or particulate flows; Mirabolghasemi et al. 
2015), for instance, is notably difficult. Molecular-
scale simulation of complex fluids, including complex 
hydrocarbon compositions and minerals, is another 
challenge that has not been adequately addressed. Our 
ability to predict multicomponent fluid properties and 
phase behavior as functions of pore size using 
equations of state is limited because fluid behavior is 
sensitive to the surface chemistry of the walls. 
Developing realistic atomistic kerogen models is 
costly, and a clear methodological path toward 
predictive modeling is lacking. Attempts to mimic 
organic maturation and kerogen pore network 
generation have been made recently (Bui et al. 2018), 
but modeling efforts are in their infancy. 

 
Accelerating multiphase simulations for larger systems 
is very important for commercial applications, but 
building high-fidelity and highly optimized solvers will 
require a considerable investment of resources and 
manpower. The thickness of fluid/fluid interfaces is 
generally on the order of a few nanometers, but many 
DNS methods use diffuse interfaces that are much 
thicker than nanometers, leading to poorly resolved 
multiphase flows. Interface thickness is a significant 
source of error in these simulations, and it should be 
controlled so that it does not affect the outcome of the 
simulations. However, if diffuse-interface methods 

TAKEAWAYS 
Dynamic incorporation of subscale 
phenomena, which requires multiscale 
integration, is a challenge. Combining 
experiments and digital simulations to obtain 
effective parameters is also a need. 

Multiscale features of fluids and porous 
media must be characterized, built into PNM 
or DNS frameworks, and upscaled to assist 
core-scale analysis and reservoir simulations. 

Molecular-scale characterization of the phase 
behavior and transport properties of complex 
nanoconfined fluids, and a clear 
methodological path toward predictive 
modeling using equations of state as a 
function of pore size are needed.  

Accelerating multiphase simulations for large 
systems is important for commercial 
applications but building high-fidelity and 
highly optimized solvers will require a 
considerable investment. 

Direct numerical methods for fluid flow 
should be expanded to include three-phase 
flow and complex/non-Newtonian fluids. 

Multiphase flow models that can account for 
multiscale features on all scales and the 
factors that affect the composition and 
mobility of interfaces are needed. 

Modeling pore-scale geomechanics is very 
challenging, but the insights gained using 
modeling and simulation on the pore scale 
could potentially advance the field. 

Molecular-scale studies are needed to 
explore the effect of confinement on the 
phase behavior of fluids. 

Molecular- and pore-scale data need to be 
properly upscaled to core and reservoir 
scales.  
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could reproduce the widths and density variations of real interfaces, they could become very useful for 
simulations of nanoscale multiphase systems (Kikkinides et al. 2008; Huang et al. 2019).  
 
The capabilities of numerical methods should be expanded to include three-phase flow and complex 
and non-Newtonian fluids. Reservoirs simultaneously saturated by oil, gas, and water are very 
common. However, there have been few direct simulations of three-phase flow in porous media 
(Mohammadmoradi and Kantzas 2017; Helland et al. 2019). Similarly, despite the widespread use 
of polymers, foams, and microemulsions, direct simulations that can capture the non-Newtonian 
characteristics of these flows have also been very limited (De et al. 2017; Ataei et al. 2021). 
 
Multiphase fluid dynamics in porous media are very sensitive to factors that affect the composition 
and mobility of interfaces. Multiscale features—such as adsorbed surfactants on fluid/fluid 
surfaces, adsorbed molecules on fluid/solid surfaces, and the roughness and wettability of solid 
surfaces—can affect multiphase flow in nontrivial ways, and multiphase flow models that can take 
these factors into consideration on all scales are needed. Most, if not all, pore-scale direct 
simulations of fluid flow assume velocity continuity at fluid/solid interfaces and velocity/stress 
continuity at fluid/fluid interfaces. These assumptions, however, have been challenged by 
molecular simulations and experiments. For example, there is now ample evidence that fluid 
transport can possess significant surface slip (Fathi et al. 2012). It is also well-recognized that 
interfaces covered by amphiphiles can have their own viscosities and elasticities and thus break 
velocity/stress continuity (Fuller and Vermant 2012).  
 
Modeling pore-scale geomechanics to actually run predictions of triaxial tests and rock failure is 
an extreme challenge (Chen et al. 2020; Sun et al. 2020). This area has not received as much 
attention as transport problems have. Nevertheless, rock mechanics is often ad hoc, but its 
importance to unconventional reservoir development is ever increasing, and the insights gained 
using modeling and simulation on the pore scale could potentially advance the field. 
 
More molecular-scale studies are needed to explore the influences of nanoconfinement on the 
phase behavior of the fluids (Didar and Akkutlu 2013). A produced-gas composition, when 
redistributed into the nanopores, under reservoir pressure and temperature, creates capillary 
condensation as a result of nanoconfinement (Baek and Akkutlu 2019). During pressure depletion, 
nanoconfined oil shows delayed vaporization (lower bubblepoint pressure) because of its pore-
size-dependent composition. All of these nanoscale observations of the fluids are sensitive to the 
chemistry of the pore walls (Cristancho-Albarracin et al. 2017). Whether the fluid is interacting 
with a clay surface vs. an organic material with a certain level of thermal maturity influences the 
observations significantly. The dependence of the fluid behavior on the surface chemistry means 
that predictions of molecular simulations will vary significantly with the pore model used; hence, 
although the simulations produce results that are useful for fundamental studies, upscaling needs 
to consider the heterogeneity in fluid compositions and pore-surface chemistry. 
 
Pore-scale findings must also be linked to core-scale analysis and, ultimately, reservoir dynamics. 
Because most pore-scale simulations cannot reach the size of a fraction of a core (except for PNM), 
multiscale characterizations and upscaling by means of multiphysics continuum-scale simulations 
are needed to examine if molecular- and pore-scale findings can be clearly manifested at the core 
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level and in the field. Therefore, pore- and molecular-
scale models need to be verified and calibrated by 
physical experiments at different length scales.  
 
Critical Knowledge and Experience To Be Preserved 
and Transferred 
Molecular- and pore-scale modeling techniques are tools 
that connect images of rocks to their petrophysical 
properties. While upscaling molecular- and pore-scale 
physics to core and reservoir scales remains a challenge, 
with advances in imaging and computation, much 
knowledge and experience have been gained. It is 
essential that the experience is converted to knowledge 
and documented for the use of the future generations. 
 
Much of the fundamental knowledge and expertise on 
molecular- and pore-scale modeling—such as the physics 
and methodology of imaging, the design and 
optimization of computational fluid dynamics, and 
molecular physics methods—have already been 
developed and documented in other disciplines. The 
available information from the other disciplines should 
be accessed through the literature, and the relevant 
learnings should be reviewed and transferred to 
petroleum engineering and the geosciences. For 
applications in the oil and gas industry, it is important to 
maintain the specific knowledge and expertise regarding: 
1) the multiscale features of reservoir rocks and 
characterization methods; 2) computational methods and 
results for fluid states and the petrophysical properties of 
rocks; 3) the physics of and methodology for multiphase 
flows, particularly the development and use of network 
models because they have proven to offer superior 
upscaling potential while maintaining flexibility to 
accommodate new and complex physics; and 4) the state 
and rheology of complex molecular mixtures in small 
pores subjected to strong surface forces.  
 
In addition, data sets that contain both experimental 
measurements and simulation for accurate knowledge integration need to be maintained. Because 
data sets that connect experiments and DCA are large and continue to increase in size, they are at 
a greater danger of being lost during an academic and industry transition than software is. 
Specialized data portals—such as the Energy Data eXchange (National Energy Technology 
Laboratory 2011), Digital Rocks Portal (Prodanović et al. 2015), and SPE Data Repository 
(Society of Petroleum Engineers 2021)—are emerging, but the community needs to support their 
upkeep to prevent critical data loss.      

TAKEAWAYS 
The knowledge and experience regarding the 
upscaling of molecular- and pore-scale 
physics to core and reservoir scales should be 
documented for the use of future 
generations. 
 
Knowledge and experience regarding pore-
scale modeling and associated 
computational methods developed outside 
the petroleum engineering discipline should 
be accessed and transferred over.  
 
The multiscale features of reservoir rocks and 
appropriate characterization methods should 
be recognized and emphasized. 
 
Computational methods and results for fluid 
states and the petrophysical properties of 
rocks should be documented. 
 
The physics of multiphase flow should be 
well-understood, and the development and 
use of network models for multiphase flow 
should be encouraged for their upscaling 
potential. 
 
The state and rheology of complex molecular 
mixtures in small pores subject to strong 
surface forces in unconventional reservoirs 
should be well-documented.  
 
The upkeep and maintenance of important 
data sets must be supported. 
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Field-Scale Numerical Reservoir Simulation 
 
Contributors  

• I. Yucel Akkutlu (Texas A&M University) 
• Mohammed Al-Kobaisi (Khalifa University) 
• Omer Alpak (Shell) 
• Chet Ozgen (NITEC LLC) 

 
Introduction 
Numerical reservoir flow simulators are thermodynamically consistent models of the transport of 
multiple fluid phases and their components in a heterogeneous hydrocarbon-bearing reservoir that 
is subject to regulatory considerations and the constraints of the recovery strategy, 
surface/subsurface operations, market demand, and the investment strategy. Reservoir flow 
simulators are routinely used by the industry to verify and refine reservoir characterization, predict 
the dynamics of the reservoir under various operating conditions, estimate recovery profiles, 
identify optimal development plans, quantify surface and subsurface uncertainties, and monitor 
field operations. Numerous studies have reported many successful applications of reservoir flow 
simulation technologies and demonstrated their benefits. However, it is widely agreed that 
uncertainties can exist in predictions, and it should be noted that these uncertainties result from 
our limited knowledge of the initial/boundary conditions of reservoirs and, perhaps more 
importantly, reservoir geology.  
 
History, Background, and Original Concepts 
A number of companies recognized the usefulness of numerical reservoir simulators in the late 
1950s, with first versions of usable reservoir simulators emerging in the early 1960s. Since then, 
continuous development has made numerical reservoir simulators invaluable tools in the modern 
management of hydrocarbon resources. 

 
Two types of models predate numerical reservoir simulators: electric analog models and scaled 
physical (fluid flow) models. Electric analog models were made obsolete because the same 
problems can be solved more efficiently with a numerical reservoir simulator. Scaled physical 
models (such as micromodels, Hele-Shaw cells, core plugs, and multidimensional sandpacks) 
had a variety of applications, but their use for developing a reservoir-scale understanding of flow 
has lessened because they are more expensive and time consuming to develop, less flexible, and 
difficult to scale up to the reservoir scale. Such physical models are currently used in a narrow 
spectrum of specialized applications and often in conjunction with numerical simulation. 
However, physical flow models are undergoing a renaissance, helping to develop a better 
understanding of pore-scale flow, in the form of “flow chips,” thanks to contemporary 
developments in miniaturization. 

 
Computing and hardware architecture advancements are intimately intertwined with the developments 
in numerical reservoir simulation. In the early days of simulation, full-field stochastic modeling was 
unheard of, and engineers relied on deterministic sector and small-field models; in the past decade, 
full-field reservoir simulation has become almost a routine application. Large, complex fields are 
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increasingly being modeled by coupling surface facilities 
(and their associated physics) with subsurface flow physics. 
Parallel processing, the racking up of layers and layers of 
central processing unit (CPU) chips, and the use of near-
superlinear scalability have improved the modeling 
turnaround time. Cloud computing has further increased 
our capabilities by making affordable the use of a vast 
number of processors to simulation practitioners, on 
demand and from any location.  

 
Numerical (field-scale) reservoir simulation and direct 
numerical pore-scale modeling share fundamental laws 
that govern the motion of multiphase, multicomponent 
fluids. These laws are based on the conservation of mass, 
momentum, and energy (Bird et al. 1960) expressed by 
the general Navier-Stokes equations that underpin 
computational fluid dynamics techniques (Versteeg and 
Malalasekera 1995) and a set of thermodynamics-based 
constitutive laws, such as the equations of state. A semi-
empirical approach based on Darcy’s law of viscous flow 
in porous media and its extension for multiphase flow is 
used in reservoir simulation, eliminating the need to 
solve the momentum balance equation (Collins 1961; 
Scheidegger 1974; Aziz and Settari 1979; Mattax and 
Dalton 1990; Ertekin et al. 2001). While this appears to 
be a simplification from a computational modeling 
perspective, significant complexity comes in through 
reservoir heterogeneities that influence key flow 
parameters, such as transmissibility, and the ensuing 
nonlinearity. In addition, fluid thermodynamics and 
uncertainties in other significant subsurface properties 
render reservoir flow simulators and their associated 
workflows highly complex. Instead of the lattice 
Boltzmann method and finite-volume techniques that are 
often used for the direct solution of fluid flows, finite-
difference, finite-volume, and (to a lesser degree) 
variants of mixed finite-element techniques are 
commonly used in field-scale reservoir simulators.  
 
In principle, one can compute the Navier-Stokes 
equations within the pore space at the microscale level to 
reveal some physical properties of the flow behavior at 
such a scale. In practice and for field-scale applications, 
however, it is not practical to simulate flow at the pore 
scale. Multiscale simulation technology has emerged 
over the past two decades, and in our opinion, its full 

TAKEAWAYS 
Since the first usable numerical reservoir 
simulators emerged in the early 1960s, 
continuous development has made them 
invaluable in managing hydrocarbon 
resources. 
 
Numerical simulators have replaced 
electric analog models and have  
largely replaced scaled physical  
fluid-flow models. 
 
Advances in distributed and parallel 
computing and hardware architecture 
developments have enabled routine use 
of full-field simulations. 
 
Numerical reservoir simulators are based 
on the fundamental laws that govern the 
motion of multiphase, multicomponent 
fluids in combination with a multiphase 
extension of  
Darcy’s law. 
 
The incorporation of reservoir 
heterogeneity complexities and the 
ensuing nonlinearity, the intricacies  
of fluid thermodynamics, and the 
uncertainties of subsurface properties 
render reservoir simulators and their 
associated workflows highly complex. 
 
Finite-difference, finite-volume, and  
(to a lesser-degree) variants of  
mixed finite-element techniques  
are commonly used in field-scale 
reservoir simulators. 
 
Multiscale simulation technology (both at 
the physical- and algebraic-solution 
level) has emerged over the past two 
decades, and its full potential has not yet 
been reached. 
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potential has not yet been reached. In theory, the 
fundamental principle of multiscale simulation is to retain 
data at their pertinent spatial and temporal resolutions 
during the modeling and simulation.  
 
Previous multiscale approaches, such as the dual-scale and 
hierarchical multilevel reservoir flow simulation models, 
spurred tremendous interest in exploiting interconnectivity 
between the temporal and spatial scales. Brandt (1977), 
Ramé and Killough (1992), Guérillot and Verdiere (1995), 
Guedes and Schiozer (1999), and Audigane and Blunt 
(2003) predominantly focused on aspects of upscaling to 
effective properties, most notably permeability, using 
volumetric and flow-based averages. Then, by imposing 
some boundary conditions on the subscale problem, one 
would be able to reconstruct solutions at the subscale level. 
Hou and Wu (1997), Jenny et al. (2003), and Aarnes et al. 
(2006) opened a new dimension in reservoir simulation in 
which upscaling to effective properties was not necessarily 
needed. The approach involved developing prolongation 
and restriction operators capable of encapsulating the 
physics of flow at the subscale level of interest. However, 
generalizability and process dependency remain challenges 
for upscaled models with multiphase effective properties.  
 
Graphics processing unit (GPU) acceleration (Mukundakrishnan et al. 2015) combined with a new 
generation of solver preconditioning techniques, such as the algebraic multigrid family of 
preconditioners (Gries et al. 2014), deliver speedups to fine-scale models that are comparable to 
multiscale reservoir simulator formulations. The effectiveness of a given acceleration paradigm in 
a reservoir simulation model remains dependent on the heterogeneity of the partial differential 
equation coefficients, grid quality, and strength of the coupling between flow, transport, and the 
thermodynamic components of multiphase flow.    

 
At first, these developments were geared toward enhancing computational efficiencies. Today’s 
multiscale modeling approaches tackle crossing the chasm of scales and feature complicated 
physical problems, including compositional modeling (Hajibeygi and Tchelepi 2014), naturally 
fractured reservoirs (Ţene et al. 2016), establishing quantitative links between pore-scale and 
reservoir-scale physics (Mehmani and Tchelepi 2018; Alpak et al. 2018), and even big-data 
analytics and assimilation (de Moraes et al. 2020).  
 
Cross-disciplinary (multiphysics) applications have also gained traction in the past two decades. 
Conventional reservoir simulators compute the pore-volume change through the rock 
compressibility concept, subject to the assumptions that in the reservoir (1) the total stress remains 
constant, (2) the loading condition is identical to the laboratory condition under which the rock 
compressibility was measured, and (3) local-bridging effects around a gridblock or a neighboring 
block can be assumed to be negligibly small (Chin et al. 2002). In addition, conventional reservoir 

TAKEAWAYS 
Today’s multiscale modeling 
approaches tackle crossing the chasm 
of scales and feature complicated 
physical problems.  
It is likely multiscale technology  
will continue to develop and help  
fill in some of the gaps regarding 
multiscale disparities. 
 
Cross-disciplinary (multiphysics) 
applications have gained traction  
in the past two decades, with  
the coupling of fluid flow  
and geomechanics. Recent 
advancements have made it  
possible to solve for the changes  
in mean stress, pressure, and 
saturations, both temporally  
and spatially. 
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simulators do not account for the interaction effects between 
the reservoir and its surrounding regions such as 
overburden, underburden, and sideburden. Reservoir 
properties (e.g., permeability) are typically assumed to be 
insensitive to the change of stress state in the rock 
compressibility approach. These assumptions, however, can 
restrict conventional reservoir simulators from performing 
realistic dynamic forecasts for reservoirs with complex 
geomechanical behaviors. With the integration of 
geomechanics, reservoir rock of complicated constitutive 
behavior can be rigorously simulated without 
geomechanical limitations and the coupled analysis can 
handle the effects of stress-sensitive properties and 
heterogeneity in the reservoir. The coupled analysis also 
considers the effects of surrounding regions/reservoir 
interaction and local bridging in the reservoir.  
 
Explicit, iterative, and full coupling approaches have been 
proposed for the two-way coupled solution of flow and 
geomechanics equations (Minkoff et al. 2003; Dean et al. 
2006; Prévost 2014). The advantages and disadvantages of 
coupling strategies have been established through 
comparative studies (Samier et al. 2006). Stability issues 
have been analyzed for alternative formulations (Kim et al. 
2011). Poroelasto-plastic rock mechanics modeling 
techniques have been incorporated into coupled flow and 
geomechanics simulators (Alpak 2015). Field cases where 
coupled simulators led to an improved understanding of 
subsurface fluid and rock structure interactions have been 
reported (Coombe et al. 2001; Walters et al. 2002; Collins 
2005; Tran et al. 2009). 
 
Current Status 
Hardware and accessibility have been the significant factors 
in the development of large-scale numerical models. At the 
core of reservoir simulation lies the numerical scheme that 
discretizes the continuous governing equations in space and 
time into a set of equations so that approximate numerical 
solutions can be obtained. Many of the advancements in 
today’s reservoir simulation are mathematics-related (e.g., 
advanced discretization methods, adaptive and sophisticated 
gridding, linear and nonlinear solvers) or related to hardware 
and algorithmic in nature (e.g., parallel processing, 
CPU/GPU architectures, cloud computing), with some 
overlap between them. 

 

TAKEAWAYS 
The current reservoir simulation 
methods and technology are based 
on the developments in applied and 
computational mathematics and 
software engineering and hardware 
and are algorithmic in nature. 
 
Geomechanics and fluid-flow 
simulation coupling is also central to 
optimizing unconventional 
developments, with the added 
complexity of hydraulic fracture 
propagation physics and the 
multicontinua (n-porosity/n-
permeability) nature of the rock. 
 
For the numerical simulation of 
unconventional resources, three 
different commercial approaches are 
available: 
• Explicit modeling of the hydraulic 

fracturing process, upscaling, and 
the importing  
of the changes caused by the 
stimulation into the flow-based 
continuum model. 

• The DFN concept and the 
adoption of a hybrid, finite-
volume approach to account for 
fluid losses into the matrix. 

• The standard finite-
difference/finite-volume 
continuum-based approach with 
an added mean-stress equation. 

 
Another niche multiphysics approach 
is the coupling of electromagnetics 
(Maxwell’s equations) with reservoir 
fluid-flow equations. 
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Geomechanics and fluid-flow simulation coupling is central to optimizing unconventional 
developments, with the added complexity that hydraulic fracture propagation physics and the 
multicontinua (n-porosity/n-permeability) nature of the rock be included, leading to a truly 
multiscale multiphysics problem. Relative to conventional applications, hydraulic fracturing is a 
very fast process that requires significantly small timesteps to properly model the physics. It is 
also confined to a small volume around the wells, thus requiring significantly small gridblocks. In 
this scenario, the standard approach of coupling force (stress) and momentum (flow) solutions in 
a sequential manner results in significant material-balance violations. 
 
A fully implicit approach where stress equations are added to the flow equations has overcome 
this bottleneck using certain simplifying assumptions (Dean and Schmidt 2009; Sherman et al. 
2015; Settgast et al. 2017; Birkholzer et al. 2019; Rogers et al. 2020). Novel approaches are also 
being developed to simulate the propagation of fractures in a more computationally efficient 
manner that can be coupled with multiphase, multicomponent reservoir simulators (Wick et al. 
2016). With these latest advancements, it is possible to solve for the changes in mean stress, 
pressure, and saturations, both temporally and spatially. In addition to the modeling of hydraulic 
fracturing processes, these advancements enable the calculation of the stress applied to 
fractures/rocks during the production process, improving the accuracy of pore-volume and 
permeability calculations. 

 
For the numerical simulation of unconventional resources, three different commercial solutions 
are available. The first approach, which has been used in the industry for many decades, involves 
the explicit modeling of the hydraulic fracturing process, upscaling, and the importing of the 
changes caused by the stimulation into flow-based continuum models. The second commercially 
available approach centers on the discrete fracture network (DFN) concept. Because the DFN 
representation of the natural fractures and the weakness planes naturally lends itself to finite-
element discretization, the industry has adopted a hybrid, finite-volume approach to account for 
the fluid losses into the matrix. The third commercially available approach uses the standard finite-
difference/finite-volume continuum-based approach with an added mean-stress equation. In this 
approach, the volumetric density of the DFNs is represented as the Warren and Root dual-porosity 
matrix/fracture exchange (transmissibility) coefficient. Similar to hydraulic fracturing simulators, 
a “stress profile” criterion is used to initiate deformation for tensile fractures and other 
deformations associated with the overcoming of the cohesive, adhesive, and compressive strength 
of the rock fabric as a function of stress.  

 
Another niche multiphysics approach is the coupling of electromagnetics (Maxwell’s equations) 
with reservoir fluid-flow equations. For example, formation Joule heating for heavy-oil 
applications requires the solution of low-frequency (direct-current limit) Maxwell’s equations in 
conjunction with thermal multiphase, multicomponent flow equations (Lashgari et al. 2016). The 
inversion of cross-well electromagnetic data for waterflood monitoring (Zhang and Hoteit 2019) 
and radio-frequency electromagnetic heating applications (Li et al. 2019) also require the coupling 
of reservoir simulation equations and Maxwell’s equations. 
 
Evolving and Future Needs and Expectations  
Despite the salient advancements in the field, we struggle to model several types of problems, 
including the behavior of unconventional reservoirs and their peculiar fluid storage and transport 
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mechanisms, complex fault/fracture and facies systems, and 
other multiphysics reservoir modeling applications. 

 
In unconventional reservoirs, the challenges fundamentally 
lie in our limited understanding of how nano-Darcy 
reservoirs behave at the macroscale level. Current studies on 
unconventionals are primarily focused on the microscale 
behavior of fluid flow and transport in porous media. The 
recent improvements and trends in the digital-rock-physics 
world and pore-scale modeling (e.g., molecular dynamics 
simulation, pore networks, and lattice Boltzmann), assisted 
by tremendous imaging capabilities, should not be confined 
to nanoscales. Unless currently lacking linkages to 
continuum-based finite-difference or finite-element 
simulations are established, the impact of pore-scale 
modeling will not last. The a priori assumption regarding the 
existence of the representative elemental volume may not be 
suitable in such reservoirs when the underpinning rule in 
reservoir simulation has always been a continuum 
assumption. It is imperative that we start looking at the 
physical problem with multiscale lenses.  

 
Intrinsic to the success of simulation studies is reservoir 
characterization. The development of accurate reservoir 
characterization models that represent the detailed 
architecture of reservoirs and the spatial distribution of 
properties—most importantly those affecting the velocity 
fields—is of paramount importance. The characterization 
model must be complemented by accurate representations of 
the thermodynamic behaviors of hydrocarbon mixtures, 
from the reservoir to facilities and during the life of the field. 
It is also critically important to measure the constitutive 
relations that describe rock/fluid interactions and define 
their representations at all scales.  
 
Field-scale numerical reservoir simulation is a multifaceted 
technology with a direct impact on effective decision making 
in the petroleum industry. However, there are challenges and 
opportunities awaiting the current technology. Moore’s law is 
exhibiting an increasingly flattening asymptote, and 
microchip manufacturing is approaching the physical 
miniaturization limit at the atom level. Much research is 
currently being devoted to quantum computing, and some of the early breakthroughs are quite 
promising. Code development could experience yet another paradigm shift in the very near future. 
An example is the penetration of GPU computing into the scientific computing community, and thus 
into reservoir simulator engines, over the past decade, compliments of the gaming industry.  

TAKEAWAYS 
New constitutive relations  
should be developed, and existing 
ones should be improved to describe 
the rock/fluid interactions at all scales 
to better represent  
flow phenomena in conventional, 
unconventional, and other emerging 
reservoir applications.  
In unconventional reservoirs, the 
challenges fundamentally lie in  
the limited understanding of how  
nano-Darcy reservoirs behave  
at the macroscale level. 
 
Cross-scale linkages are needed 
between pore-scale flow physics, 
digital-rock simulations, and Darcy-
scale continuum field-scale 
simulations. 
 
The development of accurate 
reservoir characterization models that 
represent the detailed reservoir 
architecture and the spatial 
distribution of properties—most 
importantly those affecting the 
velocity fields—is of paramount 
importance. 
 
Although they will not solve all our 
challenges, deep learning, physics-
based artificial-intelligence models, 
automation, cloud computing, the 
internet of things, and the 
digitalization of workflows are 
expected to play important roles in 
reservoir simulation workflows. 
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Current trends are also indicating that deep learning and its 
hybridization with physics-based models will play an even-
more-significant role in the future of reservoir simulation 
workflows and at a lower level within solver machinery. 
Similarly, the development of quantum computing will have 
a significant impact on our algorithms. The fusion of 
artificial intelligence, automation, cloud computing, the 
internet of things, and the digitalization of workflows is 
rapidly affecting our industry. While many oil- and gas-
industry standard operations and routine tasks naturally lend 
themselves to these technologies, these developments are 
not a magic wand to solve all our challenges.  
 
Critical Knowledge and Experience To Be Preserved 
and Transferred 
Publications from SPE and other organizations will likely 
ensure that the critical knowledge associated with the 
development of numerical simulation software will be preserved. History has shown that software 
providers may change but the technology is typically preserved and enhanced. 
 
However, the experience gained through the application of these software packages cannot be as 
easily preserved or transferred. In the context of reservoir simulation, our obsession with 
automating software and displaying impressive user interfaces often overshadows a user’s ability 
to question the output and seek the most-relevant data. Until artificial-intelligence applications 
become truly intelligent, we will have to rely on the human-to-human transfer of experience for 
the appropriate application of these software packages. Existing publications and resources do not 
satisfactorily address the application-experience problem.  
 
 
 

 

  

TAKEAWAYS 
Publications from SPE and similar 
organizations will likely preserve the 
critical knowledge associated with the 
development of numerical simulation 
software.  
 
However, the experience gained 
through application cannot be as 
easily preserved or transferred,  
and for this, we will have to rely  
on the human-to-human transfer  
of experience.  
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Enhanced Oil Recovery 
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• Vlad Sudakov (Kazan Federal University) 
 

 
Introduction 
Current primary depletion and waterflood or gasflood 
processes leave a significant fraction of oil in the 
reservoir. Enhanced oil recovery (EOR) processes can 
improve oil recovery through the injection of substances 
that are not native to the reservoir. These substances can 
include one or more of the following: steam, air, carbon 
dioxide (CO2), enriched hydrocarbons, nitrogen (N2), 
surfactants, alkali, polymers, microbial solutions, fresh 
water, and solutions incorporating nanoparticles; the 
injection could involve interwell flow or huff ’n’ puff 
(HNP) processes. The potential worldwide recovery using 
EOR processes could be significantly greater than 1 
trillion bbl if both conventional and unconventional 
reservoirs (URs) are included.  

 
Despite more than 40 years of active use, EOR accounts 
for less than 10% of the oil produced daily. The factors 
that have resulted in slow adoption include 

• That a limited number of processes might be 
applicable to any individual reservoir 

• High operating costs for the injection fluids 
• High capital costs for injectants and the facilities 

to mix or create those fluids or process their 
byproducts from production  

• The significant expertise required to successfully 
run these facilities and manage reservoirs 

• Long construction lead times and slow oil 
response times—cash-flow impact 

• Slow uptake of cutting-edge technologies 
• Competition with faster-responding projects for 

capital 
 
  

TAKEAWAYS 
EOR processes have been applied  
in various forms for more than  
150 years in conventional reservoirs 
and most actively over the past  
40 years. 
 
The majority of EOR processes  
fall into the thermal, chemical,  
or solvent categories.   
 
From the 1970s to the 2000s, steam 
injection was used most frequently 
and with the most success.   
 
Interest in chemical EOR methods 
peaked in the 1980s, with alkaline-
surfactant-polymer flooding now 
viewed as the most-promising 
chemical injection method.  
 
Nitrogen and HC gas solvent injection 
were popular in the 1950–1970’s. 
Today, HC gas solvent floods are 
found in areas where the gas has little 
value except as an injectant, i.e., 
North Slope and unconventional EOR 
pilots. 
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History, Background, and Original Concepts  
EOR processes have been applied in various forms for more than 150 years in conventional 
reservoirs and most actively over the past 40 years. EOR processes improve oil recovery 
through a focus on one or more recovery mechanism efficiencies. Microscopic displacement 
efficiency can be enhanced through the reduction of interfacial tension (IFT), improved 
miscibility, oil swelling, and oil viscosity reduction. Improvements in the volumetric sweep 
efficiency are primarily driven by a reduced mobility ratio, but fluid densities can be used to 
enhance volumetric sweep in some reservoirs.  
 
The majority of EOR processes fall into the thermal, chemical, or solvent categories. Thermal 
methods have been around since 1865, with the underlying goal to reduce the oil viscosity and 
allow the oil to flow more easily to the producing wellbore (Perry and Warner 1865). Since 
then, various approaches—including the injection of air and steam—have been tried, with 
steam injection used in the most EOR projects around the world from the 1970s to the 2000s 
and producing the greatest EOR benefits. 

 
Chemical EOR trials and interest in chemical methods peaked in the 1980s, with polymer 
flooding being the most-popular technique. Since 1990, few new projects have been 
implemented, except in China. Polymer flooding is now considered a mature technology, and 
research efforts continue to investigate efficiency gains from polymer flooding. Alkaline-
surfactant-polymer flooding is now viewed as the most-promising chemical injection method, 
and a pilot injection was started in China in 1994 (Alvarado and Manrique 2010). 

 
Solvent EOR has been applied, with N2 and hydrocarbon-gas projects favored between the 
1950s and 1970s, primarily as pressure maintenance projects. Since then, these projects have 
declined in popularity, except for miscible hydrocarbon injection projects on the North Slope 
in Alaska. CO2 was successfully applied in the US in carbonate reservoirs in the Permian Basin 
starting in 1972 and in sandstone formations in Mississippi and Wyoming in the 1980s. Only 
a handful of CO2 injection projects have been attempted outside the US, primarily because of 
a lack of economical sources of CO2. On the other hand, interest has recently grown regarding 
the use of CO2 and hydrocarbon gas or enriched gas for HNP EOR in North American 
unconventional reservoirs (Hoffman and Evans 2016; Alfarge et al. 2017; Sahni and Liu 2018; 
Nagarajan et al. 2020).  
 
Current Status  
Most EOR activity has occurred over the past 40 years or more using thermal, solvent, 
chemical, or other EOR processes, or a combination thereof.   

 
Thermal processes, which are the most mature and well-understood of the EOR processes, 
include cyclic steam, steamflood, steam-assisted gravity drainage (SAGD), and high-pressure 
air injection (also called in-situ combustion). Because thermal processes generally target 
higher-viscosity oils, the mobility benefit of a viscosity reduction greatly improves the 
recovery efficiency. Steam-based processes raise the temperature of the oil and reduce oil 
viscosity, which increase oil recovery. To be efficient, these processes require lower pressures, 
which is why they are mostly applied in reservoirs at shallower depths.  
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Steamflood has been used in cyclic-steam injection to 
develop a swept area around wells (Burns 1969), which 
can be converted to a flood after sufficient injectivity 
has been established or the steam/oil ratio has declined. 
In SAGD, a horizontal injector is drilled above a 
horizontal producer, and the heat from injected steam 
is used to reduce viscosity and the density difference 
to enhance oil drainage in and near the steam chest. 
There is also toe-to-heel air injection, with and without 
the catalytic conversion of heavy oils to lighter oils. 
High-pressure air injection thermally oxidizes a 
portion of the heavier hydrocarbons to create heat and 
generate CO2 and steam, thereby significantly reducing 
the oil viscosity, swelling the oil, and pushing the oil 
toward producing wells.  

 
Thermal processes were the primary EOR method for 
many years [peaking at 500 million BOPD in 1985 and 
declining to approximately 300 million BOPD in 2014 
(Koottungal 2014)], but their use is in decline because 
of a lack of high-viscosity shallow reservoirs that have 
not already been flooded and the comparably high cost 
of steam. 

 
Solvent processes have eclipsed thermal processes 
both in terms of EOR production and their frequency 
of use in projects, primarily driven by miscible CO2 
injection. Other solvent processes include the injection 
of enriched hydrocarbon gas, flue gas, and N2. These 
processes are most effective where reservoir pressure 
is above the minimum miscibility pressure (MMP), and 
they tend to exchange mobility control for a 
substantially improved microscopic displacement 
efficiency because of oil swelling, an oil viscosity 
reduction, and an IFT reduction. Water-alternating-gas 
(WAG) injection and foam injection improve mobility 
control through relative permeability effects to block 
zones that are more permeable and homogenize the 
sweep front, reducing fingering and injectant 
channeling. More recently, laboratory studies and field 
trials in unconventional reservoirs have used gas-
injection HNP methods, where the key mechanisms are 
primarily oil swelling, viscosity reduction, and IFT 
reduction (Hoffman and Evans 2016).   

 

TAKEAWAYS 
Although the thermal processes are the 
most-mature EOR technologies, their use 
has been in decline because of a lack of 
high-viscosity, unflooded, shallow 
reservoirs and the high cost  
of steam. 
 
Solvent processes have surpassed 
thermal processes in both production 
and frequency of use. 
 
Recent laboratory studies and field trials 
have indicated the EOR potential of gas-
injection HNP in unconventional 
reservoirs.  
 
CO2 is the dominant solvent for EOR, but 
it has limited natural availability in most 
areas. The economics of the use of 
anthropogenic CO2 for EOR is currently 
not established. 
 
Foam flooding for improved mobility 
control has been tested but is not used 
routinely. 
 
The chemical EOR process is quite 
flexible and can be applied in any 
geographic location, but the 
surfactant/polymer process must  
be designed for specific reservoirs. 
 
Other processes—including the use of 
microbes, nanoparticles, low salinity, 
polymers with low salinity, and ionic 
liquids—have shown promise but tend  
to be much less well-understood. 
 
Combination processes can improve 
recovery over that of each individual 
process but add expense and complexity. 
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Hydrocarbon gas or natural gas liquids are rarely used in solvent processes because of their 
economic value relative to their value as injectants, so they are typically considered for solvent 
injection only where they have no market or little value (e.g., in the North Slope of Alaska). 
Other gases have been used, but the dominant solvent is CO2, which has a limited natural 
availability in most areas. Exceptions are the Permian Basin, the southeastern US, and, to a 
lesser extent, the Rocky Mountains, which have natural, albeit declining, CO2 sources nearby. 
A lack of large-volume CO2 sources near fields has limited CO2 flooding in other parts of the 
world. Recently, the industry has begun to explore anthropogenic sources, which could result 
in a broader availability of CO2, but the technical and economic viability of using 
anthropogenic CO2 for EOR is currently not established. While other gases (such as methane-
rich natural gas, N2, and flue gas) have been used in EOR floods, their MMP is substantially 
higher than that of hydrocarbon gas or CO2, making miscibility in the reservoir difficult to 
achieve without exceeding the fracture pressure of the reservoir. Foam flooding for improved 
mobility control has been tested but is not used routinely. 

 
Chemical processes include the injection of polymers only or combinations of surfactants and 
polymers. Surfactants reduce IFT to mobilize trapped oil and improve displacement efficiency. 
Polymers increase viscosity and improve the sweep efficiency. Alkalis are often added to 
reduce surfactant adsorption, and cosolvents are added to improve phase behavior.  
 
The chemical EOR process is quite flexible and can be applied in any geographic location, but 
the surfactant/polymer process must be designed for specific reservoirs. Although polymer 
flooding has been and is being applied in many reservoirs around the world, surfactant flooding 
has been piloted for many reservoirs but has seen limited fieldwide application because of long 
response times and the high level of expertise required.  

 
Other processes include the use of microbes, nanoparticles, low salinity, polymers with low 
salinity, and ionic liquids. These processes tend to be immature and much less well-understood, 
but they have shown interesting results in the laboratory. These studies have shown that ions 
and nanoparticles can reduce IFT and the contact angle, helping to make solid surfaces more 
water-wet and blocking pore throats to divert injection to other pores that have not been swept 
(Kazemzadeh et al. 2019). With microbial EOR, microbes are introduced to partially digest 
long hydrocarbon molecules (reduced viscosity), to generate biosurfactants (chemical EOR), 
or to emit CO2 (solvent EOR) (Tullo 2009). In laboratory experiments, low-salinity 
waterfloods appear to modify the wettability of the rock so that it is more water-wet (Shi et al. 
2021), and polymer treatments with changes in salinity have been shown to increase recovery 
(Sotomayor et al. 2021). 

 
In addition, using a combination of processes (such as foam gas/surfactant with a WAG 
process) can improve recovery over that of any individual process but comes at an additional 
expense and adds complexity to the operation. These processes are in the early stages, with no 
true experts in the industry because there have been few pilots, and even fewer successful 
pilots. Other combination processes, which focus on improved mobility control for otherwise 
well-known processes, include steam/foam, steam/solvent, steam and gas push, CO2 + solvent 
gas vapor extraction, and nanoparticles in foam. 
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Evolving and Future Needs and Expectations  
The average primary recovery factor for URs is typically 
less than 10% (Sheng 2017), indicating enormous potential 
for EOR processes in these resources, but because of 
extensive induced fracturing between wells and very low 
matrix permeabilities, the process has been changed from 
a flood to an HNP process. Laboratory and numerical 
modeling studies conducted for cyclic-gas injection in 
URs show that optimizing the process variables (cycle 
number, soak/injection/production times) can result in a 
substantial increase in oil recovery at acceptable 
utilization ratios (Gamadi et al. 2014). In addition, recent 
field trial results have shown that natural-gas injection 
could help recover 30 to 70% more oil (over primary 
depletion) from Eagle Ford Shale wells (Sheng 2017). 
Hence, based on these early encouraging results, there has 
been an exponential increase in research joint industry 
projects and field trials for gas EOR in unconventional 
plays across North America (Rassenfoss 2017).  

 
The application of chemicals, such as surfactants, in URs, 
both as completion additives and cyclic EOR injectants, 
has also recently gained research attention. The key 
mechanisms for surfactant EOR in unconventional plays 
include wettability alteration, IFT reduction, fracture 
damage removal, and near-wellbore repressurization 
(Zhang et al. 2019). However, unlike gas EOR, field trial 
success for chemical EOR injectants in URs has yet to be reported (Rassenfoss 2017). The very 
low recovery factors in these reservoirs and the large volume of potential target hydrocarbon 
pore volumes (HCPVs) present a valuable opportunity for the use of EOR in shales. 

 
In offshore reservoirs, the implementation of these processes can be technically and 
economically challenging because of the low number of wells, relative inaccessibility of the 
wells, and limited platform capacity. Chemical EOR might be the easiest to implement because 
it would only require an addition to the already-existing waterflood equipment, and pattern 
arrangements are already in place. Gas injection could be a possibility, but the space required—
for the process equipment to prepare the injectant or manage the additional fluids produced 
and the compressors to inject large volumes of gas—is a considerable limitation. Some 
facilities could be located onshore if they are near enough, with pipeline(s) and other 
equipment to transfer the fluids. As with the North Slope, there could be other drivers that 
enhance the economics and encourage implementation of EOR processes. Five different EOR 
processes (hydrocarbon miscible gas injection, WAG, simultaneous WAG, foam-assisted 
WAG, and microbial EOR) have been tested in the North Sea since 1975 (Teigland and Kleppe 
2006). WAG flooding appears to be the most commonly accepted EOR practice in the North 

TAKEAWAYS 
The basic EOR concepts must be 
preserved. 
 
Future practitioners should 
understand the relationship between 
the recovery factor, displacement 
efficiency, and volumetric sweep 
efficiency and how these factors are 
affected by fluid and reservoir rock 
properties. 
 
Phase behavior and rock/fluid 
interactions during EOR should be 
understood. 
 
Geology is the most important factor 
determining the success of an EOR 
project.   
 
Knowledge of formation damage 
during EOR is also important. 
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Sea, with 63% of the EOR projects located on the 
Norwegian continental shelf and another 32% 
located on the UK continental shelf.  

 
Recently, novel surfactants that can be applied in 
high-temperature and moderately high-salinity 
(equivalent to seawater) reservoirs have been 
developed. Because common polymers are not stable 
in such conditions, new polymers (synthetic and plant-
based) are also being developed. These new 
biopolymers could offer environmentally friendly 
approaches that might be lacking in today’s suite  
of chemicals. 
 
A drawback of EOR processes is the slow oil response 
time. Tight reservoirs only exacerbate this problem; 
with low throughput (%HCPV injected/yr), the 
injection front progresses slowly, delaying the onset 
of oil production from the process. In many cases, 
more than 20% HCPV must be injected before the 
fastest-zone oil response appears at the production 
well. If the throughput is 2% or less, it can take more 
than 10 years for oil response, which is disruptive to 
the economics of any project, and other approaches 
might need to be considered. Hydraulic fracturing 
could be an option to increase throughput, but it 
reduces sweep efficiency. 
 
In high-pressure air injection, the combustion-front 
velocity must be maintained within the appropriate 
narrow range unless the formation temperature is 
sufficiently high to auto reignite the combustion front 
with continued air injection. If this risk can be 
alleviated, high-pressure air injection could be more 
broadly used in many mature oil fields across the 
world because air is readily available in all locations. 
 
The key challenges for surfactant flooding are 
surfactant retention and finding ultralow IFT 
formulations for harsh-condition reservoirs. For 
polymer flooding, the challenges are maintaining 
polymer stability at high temperatures and high 
salinities and transporting polymers in low-
permeability rocks. 
 
  

TAKEAWAYS 
Based on early encouraging results, there 
has been an exponential increase in 
research joint industry projects and field 
trials for gas EOR in unconventional plays 
across North America. 
 
The application of surfactants in URs has 
also recently gained research attention, but 
field trial success for chemical EOR 
injectants in URs has yet to be reported. 
 
Implementing EOR processes can be 
technically and economically challenging 
offshore; chemical EOR may be the easiest 
to use, while gas injection could be a 
possibility. 
 
Novel surfactants that can be applied  
in high-temperature and moderately high-
salinity reservoirs have been  
recently developed. 
 
A drawback of EOR processes is the slow oil 
response time; hydraulic fracturing could be 
considered to increase throughput, but it 
reduces sweep efficiency. 
 
If the combustion-front velocity risk can be 
alleviated, high-pressure air injection 
potentially offers a broader application  
in many mature oil fields because air is 
readily available. 
 
Surfactant retention and finding ultralow IFT 
formulations for harsh-condition reservoirs 
are the key challenges for surfactant 
flooding. For polymer flooding, polymer 
stability in high-temperature and high-
salinity reservoirs and the transport of 
polymers in low-permeability  
rocks are the primary challenges. 
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Critical Knowledge and Experience To Be Preserved and Transferred 
It is essential that knowledge of the basic EOR concepts and state-of-the-art EOR methods be 
preserved (Lake et al. 2014; Kamal et al. 2017; Agi et al. 2018; Green and Willhite 2018; 
Gbadamosi et al. 2019). The basic concepts include an understanding of the forces that help or 
hinder recovery, such as viscous forces, capillary forces, applied pressure forces, and gravity.  
 
The recovery factor is determined by the microscopic displacement efficiency and the volumetric 
sweep efficiency. It is important that future practitioners understand both the relationship 
between these essential factors and how they are affected by fluid (both in situ and injected) and 
reservoir rock properties. Recognizing reservoir geology as a key for success of an EOR project 
is also essential. 
 
Other important concepts that must be understood include phase behavior and rock/fluid 
interactions during EOR. Practitioners should also be aware of how formation damage occurs 
during EOR processes and what can be done to mitigate it. 
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Well Performance 
 
Contributors 

• Neha Bansal (DeGolyer and MacNaughton) 
• Tom Blasingame (Texas A&M University) 
• Dilhan Ilk (DeGolyer and MacNaughton) 

 
Introduction 
Well performance analysis generally refers to the analysis and interpretation of production rates 
and pressures from producing wells to estimate ultimate recovery and evaluate dynamic reservoir 
properties (permeability and other reservoir properties, depending on the geological model) and 
completion parameters (such as the skin factor, fracture half-length). More broadly, results from 
well performance analyses provide insights into and facilitate reservoir characterization, field 
development planning, and completion optimization.   

 
Well performance analyses (i.e., analyses of production and pressure data) can be categorized  
as follows: 

• Time/rate analysis, or decline curve analysis (DCA)  
• Time/pressure data analysis, or pressure transient analysis (PTA) 
• Time/rate/pressure data analysis, or rate transient analysis (RTA) 

 
However, well performance analysis should not be solely limited to production rate and pressure 
data measurements and analyses. Instead, using these methods in conjunction with key subsurface 
data and completion diagnostics provides a better understanding of a system and leads to  
better decisions. 
 
History, Background, and Original Concepts  
Methods for DCA are generally data driven and tend to rely on empirical equations and/or relations 
derived from analytical expressions using idealized conditions or assumptions (e.g., the constant 
wellbore pressure case). Arps’ exponential and hyperbolic decline relations [presented by Arps 
(1945) but first published by Johnson and Bollens (1927)] are still widely used in the industry to 
estimate ultimate recovery and book reserves and resources.  

 
The DCA literature has greatly expanded over the past 10 years, coincident with the exploitation 
of low-/ultralow-permeability (unconventional) reservoirs. Today, many decline curve relations 
are available in the literature that are based on a certain characteristic behavior and/or related to a 
specific flow regime. While some of these “transient” solutions are based on theoretical 
considerations, the assumptions and applications are often empirically derived. Many of these 
relations have similar characteristics, and thus far, none are fully rigorous; all proposed relations 
have some limiting condition(s) and/or assumption(s). As one would expect, the absence of 
relatively long-term production data (> 10–15 years) from unconventional reservoirs presents 
significant challenges for empirical methods. Many models can match the historical production, 
but there is limited data-based support for extrapolation to 30 years and beyond. Additionally, 
decline-analysis-based methodologies are not capable of addressing changes in well production 
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because of factors such as artificial lift, changes in choke 
size, the impact of offset-well production, and fracture hits.  

 
In contrast, analysis methods based on time/rate/pressure 
data are derived from the solution of the diffusivity equation. 
Despite the mathematical rigor of the solution process, the 
diffusivity equation involves the Darcy-flow assumption and 
approximate representations of well and reservoir geometry, 
boundary conditions, and heterogeneities. In this context, 
conventional analyses of well performance using 
time/rate/pressure data are tied to traditional concepts such 
as permeability, porosity, fracture surface area, and standard 
reservoir boundaries (circular, rectangular), which are 
imposed by the mathematical model used in the analysis and 
its solution conditions. Well/reservoir models include 
representations of various well types, such as wells in 
homogeneous reservoirs, horizontal wells, fractured vertical 
wells, and horizontal wells with multiple fractures. 
Currently, software packages for well performance analysis 
include a large inventory of models—all based on Darcy’s 
law, as well as on traditional fluid thermodynamics and 
reservoir model constructs—with which to analyze, interpret, 
and forecast production data. 

 
As a result, the application of traditional RTA/PTA/DCA 
concepts in unconventional reservoirs could be problematic 
because of the unique nature of these systems [i.e., very low 
permeability, self-sourced production, organic porosity, 
complex fracture geometry(s)]. At present, there are no new 
methodologies specific to nanoscale storage and transport 
(i.e., molecular-level storage and Knudsen-type flow 
behavior), although there are new means of modeling such 
behavior (e.g., anomalous diffusion, “fractal” models that act 
as proxies). This leaves us with empirical decline curve 
models and traditional Darcy-flow-type models, in addition 
to conventional porosity and permeability concepts. 
Complex fracture geometries could be addressed by 
increasing the capabilities of reservoir modeling software 
packages. However, it should be emphasized that even 
complex models retain some connection to traditional 
permeability and porosity concepts. (Although the flow 
geometry might be quite complex, the “bulk” behavior 
appears to be represented by “normal” permeability and 
porosity concepts.) 

 

TAKEAWAYS 
DCA methods are generally data 
driven and tend to rely on empirical 
equations and/or relations derived 
from analytical expressions using 
idealized conditions or assumptions. 
 
The absence of relatively long-term 
production data from 
unconventional reservoirs presents 
significant challenges for empirical 
methods, with limited support for 
extrapolation to 30 years and 
beyond.  
 
Conventional analyses of well 
performance using time/rate/ 
pressure data are tied to traditional 
concepts such as Darcy flow, 
permeability, porosity, fracture 
surface area, and standard reservoir 
boundaries, which are imposed by 
the mathematical model used in the 
analysis and its solution conditions. 
 
Because of the unique nature of 
unconventional systems, using 
traditional RTA/PTA/DCA concepts in 
these reservoirs could be 
problematic. 
 
Reservoir simulation provides a 
more-complete view and better 
understanding of a system, and 
reservoir simulation models could be 
adapted to include nearly any or all 
aspects of production mechanisms. 
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Well performance analysis studies conducted using reservoir 
simulation provide a more-complete view of the well and 
reservoir as a system, which in turn leads to a better 
understanding of the system and the key production 
mechanisms (and, in particular, an ability to establish the effects 
of infill wells and different production schemes). Reservoir 
simulation studies require the availability and integration of 
data from all disciplines—geology/geophysics, petrophysics, 
geomechanics, reservoir engineering, production, and 
completions—although such integration might not be possible 
in all cases and is often cost prohibitive in terms of time and 
resources. Many operators are also leaning toward integrating 
data-driven methodologies into numerical simulation to allow 
for comprehensive decision making, especially in fast-paced 
unconventional reservoir development.  

 
Last, because reservoir simulation models are much more 
complex than RTA/PTA/DCA techniques based on single-
well models, reservoir simulation models could be adapted 
to include nearly any or all aspects of production 
mechanisms [i.e., geomodel(s), phase-behavior 
characterization, complex flow geometries (e.g., discrete 
fracture networks), multiwell production, staged/developed 
(e.g., parent/child well cases)].  
 
Current Status  
Well performance analysis based on PTA/RTA techniques is 
becoming more popular and has benefitted from increased 
computational power and data acquisition. The primary 
limitation of these techniques is associated with a lack of 
supplementary data, which would be used to constrain 
analyses and reduce uncertainty. The quality of 
time/rate/pressure data is extremely important; currently, 
production data can be rendered hourly (or less), and the 
continuous measurement of bottomhole pressures (and 
temperatures) is being more frequent used. These data 
provide significantly better resolution of production and 
pressure trends, particularly for analysis and forecasting.  

 
With the advent of large-scale unconventional reservoir development, diagnostic techniques have 
become critical tools for performance assessment before the analysis/forecasting model is 
constructed. More specifically, production diagnostic techniques are essential for understanding 
flow regimes, establishing characteristic flow behavior that can be translated to decline curve 
parameters, and establishing productivity metrics. These metrics can include volume-based 
metrics [e.g., cumulative oil/gas/water production at 1/3/6/9/12 months, pressures (average 

TAKEAWAYS 
Well performance analysis using 
PTA/RTA techniques has gained  
in popularity and benefitted from 
increased computational power  
and data acquisition, but the 
primary limitation is associated with 
a lack of supplementary data to 
constrain analysis.  
 
The quality of time/rate/pressure 
data is very important.  
 
With the advent of large-scale 
unconventional reservoir 
development, production diagnostic 
techniques have become critical 
tools for performance assessment. 
 
The deliverables from well 
performance analyses provide  
for the optimization of well 
performance, establishment of 
factors that control production  
and reserves, and benchmarking  
of productivity across an area  
of interest.   
 
Performance-based workflows could 
be used to develop “recipes” for 
field developments that would be 
tied to well spacing, targets, 
completion size and stages, 
flowback strategy, choke 
management, and artificial lift. 
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flowing pressure over 1 month, pressure gradient, initial 
pressure)] and productivity indices (e.g., establishing linear 
flow behavior from specialized plots). 

 
Production diagnostic techniques also allow for the 
performance of multiple wells to be compared and 
specifically provide the ability to contrast differences 
resulting from aspects such as well completions, reservoir 
target intervals, and lateral well spacing. Completion 
metrics (i.e., well completion and well stimulation 
parameters) can be easily integrated into models for the 
analysis of well performance, as well as to create 
correlations with well performance metrics. 

 
As a practice, the use of well performance analysis methods 
is crucial for workflows encompassing well completion 
design, reservoir characterization, and field development. 
Perhaps more importantly, the deliverables from well 
performance analyses provide for the optimization of well 
performance, establishment of factors that control production 
and reserves, and benchmarking of productivity across an 
area of interest. Performance-based workflows could be used 
to develop “recipes” for field developments that would be tied 
to well spacing, targets, completion size and stages, flowback 
strategy, choke management, and artificial lift. 
 
Evolving and Future Needs and Expectations  
At present, the industry’s priority area of interest is 
optimizing horizontal-well spacing in unconventional 
reservoirs. Many operators in North America have suffered 
from potential “overdrilling” and the overestimation of 
future production (Olson 2019). Without clear learnings and 
guidance, other emerging plays could suffer the same fates.  
 
In addition, the effects of depletion on new wells caused by 
existing producing wells, and vice versa (the so-called 
parent/child effects), have yet to be properly quantified or 
understood. One of the primary goals of reservoir 
engineering is to determine the minimum number of wells that it would take to maximize recovery 
from a given field or play, a task that is particularly difficult for unconventional plays. Attempts 
to provide “cube” or “tank” developments [i.e., where well patterns are prescribed and 
drilling/completion/stimulation/flowback are performed simultaneously (or nearly so)] have 
delivered mixed results. [Most recent reports have been negative (Jacobs 2019).] 

 
These circumstances take us back to “fit-for-purpose” designs based on geology and well 
development strategies (i.e., tailored completions and stimulations). Such fit-for-purpose 

TAKEAWAYS 
Practical and more-accurate methods 
are needed to optimize horizontal-
well spacing on the basis of well 
performance data.  
 
The quantification of the parent/child 
effect in workflows  
is needed. 
 
Using fit-for-purpose designs based 
on geology and well development 
strategies will require more 
 design considerations and more 
diagnostic/analysis/modeling efforts 
for the corresponding well 
performance data. 
 
Future efforts in unconventional 
reservoirs will primarily focus on 
understanding the fundamental 
behavior of these systems and 
incorporate that understanding  
into physical models that can be used 
to analyze, interpret, and forecast 
production data. 
 
Improvements in production 
surveillance and diagnostic 
interpretation techniques will add 
significantly to the value obtained 
from performance-based reservoir 
characterization/development 
workflows. 
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methods will require more design considerations and more 
diagnostic/analysis/modeling efforts for the corresponding 
well performance data. DCA is not designed for analysis 
during transient behavior, and RTA/PTA interpretations 
are dependent on the availability and quality of data for 
analysis. Multidisciplinary data are also needed in these 
cases for the cross-validation of outputs and to reduce the 
inherent uncertainty driven by base assumptions 
underlying such analyses in unconventional reservoirs. As 
such, future efforts in well performance analysis in 
unconventional reservoirs will primarily focus on 
understanding the fundamental behavior of these systems 
and incorporate that understanding into physical models 
that can be used to analyze, interpret, and forecast 
production data from these reservoirs.   
 
In addition, improvements in production surveillance and 
diagnostic interpretation techniques would add significantly 
to the value obtained from performance-based reservoir 
characterization/development workflows. A considerable 
number of operators often ignore or pay little attention to the 
collection of these types of data, not realizing the value of 
such information, which could potentially lead to improved 
well completions, targeting, and well spacing. 
 
Critical Knowledge and Experience To Be Preserved 
and Transferred  
The analysis of well performance requires not only high-
quality data but also a good understanding of reservoir flow 
dynamics and the effects of physical reservoir properties, 
well architecture, and the production history on well 
responses. As for the high-quality data, data acquisition 
and production surveillance techniques, tools, and 
protocols should be well-documented, updated, and 
transferred to future generations. It is equally important to 
document the state-of-the-art methods used in cross-validation and constraining analysis 
techniques and best practices.  
 
Regarding the interpretation of well performance, the diagnostic meaning of data should take 
precedence over statistical properties or mathematical aspects. The automated analysis of data—
by means of software or using simple regression or artificial intelligence and machine-learning 
techniques—should not be allowed to supersede human interpretation. Analysts should be well-
trained to avoid overconfidence or blind trust in the tools and procedures available to them or 
commonly used by others. The theoretical bases and limitations of the legacy well performance 
analysis tools should be understood, and analysts must be required to have the relevant theoretical 
background for the tools they use.  

TAKEAWAYS 
Well performance analysts should be 
well-versed in reservoir flow dynamics 
and the effects of physical reservoir 
properties, well architecture, and the 
production history on well responses.  
 
Data acquisition and production 
surveillance techniques, tools, and 
protocols should be documented, 
regularly updated, and transferred to 
future generations. 
 
State-of-the-art methods in  
cross-validation and constraining  
analysis techniques and best practices 
must be documented.  
 
The diagnostic meaning of data 
should take precedence over 
statistical properties or mathematical 
aspects. 
 
Human interpretation should 
supersede automated well 
performance analyses. 
 
Analysts must be educated and 
trained on the theoretical bases and 
limitations of the legacy well 
performance analysis tools.  
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Reservoir Management 
 

Introduction  
The objective of reservoir management is to optimize hydrocarbon recovery from a reservoir with 
respect to capital investments and operating expenses (Thakur 1996; Fanchi 2002). That is, reservoir 
management is the process of considering tradeoffs between the benefits, costs, and risks of different 
uses of technical, financial, and human resources on the basis of data, knowledge, and experience to 
achieve optimal recovery. In a broader sense, management is not a science, nor is it an art; it is a 
“practice” (Peter F Drucker on Management 1997). In general, management is a dynamic practice 
because it has to keep up with the continuously changing nature of business needs and processes, 
financial and socioeconomic conditions, and human behavior, in addition to the complex interactions 
of its constituents. Arguably, reservoir management is even more dynamic because it starts when 
there is no or very little information about the subject reservoir and evolves with the field 
development as more knowledge and better characterization of the reservoir become available. In 
addition to the risks considered in a standard management practice, reservoir management has to 
account for the risks that result from geological uncertainties and the inherent limits of our ability to 
fully characterize reservoirs and flow processes. In reservoir management, these flaws are mitigated 
by the systematic application of integrated, multidisciplinary technologies (Fanchi 2002). Most of 
the tools used in reservoir management have been discussed in previous sections of this document. 
The Reservoir Management section discusses those that remain, namely data analytics, artificial 
intelligence, and machine learning; field-scale projects; reserves; and project economics. Leadership 
is not discussed because management is not leadership. “Management is doing things right; 
leadership is doing the right things” (Drucker 2001). 
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Data Analytics, Artificial Intelligence,  
and Machine Learning 
 
Contributors  

• Emre Artun (Istanbul Technical University) 
• Sebastien Matringe (Hess) 
• Sathish Sankaran (Xecta Digital Labs) 

 
Introduction 
Aided by technological developments, recent years have witnessed a rapid increase in the volume 
of data collected in oilfield operations (Sankaran et al. 2020). Challenges—especially in the 
description of the static and dynamic characteristics of unconventional resources and the 
downturn of the oil industry—have solidified the necessity of using collected data more 
effectively for better modeling, analysis, uncertainty quantification, and decision making in 
reservoir engineering applications. The proper management and useful analysis of collected  
data to understand reservoir characteristics and behavior for both diagnostic and  
performance-forecasting purposes have become critical components of modern reservoir  
engineering practice. 

 
History, Background, and Original Concepts  
The original concepts in data analytics, artificial intelligence (AI), and machine learning (ML) 
can be grouped into the following categories: data organization, visualization, ML for 
classification, ML for prediction, modeling strategies, uncertainty and risk, and decision making. 
 
Data organization refers to how data sets are classified and organized to be more useful. Digital 
oilfield technologies enable the collection of greater volumes of data in shorter time periods. It 
is critical to properly use cloud technologies and database applications to organize data sets for 
effective analysis, analytics, and modeling. 
 
Business intelligence tools are used to better visualize and analyze data. Interactive map-based 
dashboards make analysis easier by incorporating engineering and geological knowledge and 
regional expertise. These efforts have been supported by digital oilfield initiatives. 
 
Classification is the problem of predicting a categorical output (e.g., high/low). Typical 
classification problems in reservoir engineering include the classification of rock facies 
(lithofacies, petrofacies, seismic), fluid types, production anomalies, flow regimes, drive 
mechanisms, and well/reservoir quality. When the classes are known and can be explicitly 
defined, supervised learning allows patterns to be found that link the input variables to these 
defined classes. Neural networks, support vector machines, random forests, fuzzy logic, and rule-
based systems are used for supervised learning. For example, when a series of well logs is 
mapped onto lithological descriptions in a given reservoir using subject-matter expertise, the 
data set can be used for classification-based training using a supervised learning algorithm. Such 
a model can later be used for the automatic classification of well-log intervals to identify the 
lithology in new wells. When the classes are not explicitly known, unsupervised learning 
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methods identify certain clusters from the patterns in the 
data by quantifying the similarity between individual data 
points. This allows cases with similar characteristics in the 
data set to be separated into groups. Clustering algorithms 
as well as some types of neural networks, such as self-
organizing maps, are considered to be unsupervised 
learning algorithms. For example, on the basis of reservoir 
and performance characteristics, groups of wells with 
similar characteristics can be created. Additional analysis 
can be performed to understand the distinct features of the 
well groups.  
 
In predictive modeling, a mapping function is learned from 
the inputs to the outputs (i.e., function approximation). 
Typical problems in reservoir engineering include the 
estimation of rock properties (porosity, permeability, 
saturation) and fluid properties (API gravity, gas gravity, 
solution gas/oil ratio, saturation pressure) and the prediction 
of reservoir recovery and production rate profiles. For 
example, historical performance (e.g., the oil rate), 
reservoir characteristics, and historical operational 
conditions can be used to build an integrated data set. A 
model can be trained that uses reservoir and operational 
parameters as inputs and oil recovery as an output. Similar 
to a numerical reservoir model, the trained (history-
matched) model can be used to forecast recovery under 
different conditions. Other types of predictive models 
include various empirical correlations that have been used 
for estimating rock and fluid properties using laboratory 
samples from various reservoirs. Reservoir analogs  
and physical equations have also been used for  
predicting reservoir recovery and associated production  
rate profiles.  
 
Predictive and classifier models are developed by following 
a systematic workflow that includes designing the 
parametric representation of the problem, choosing the ML algorithm, and training, evaluating, 
selecting, and validating the model. Some types of ML algorithms help in gaining insights 
regarding the importance of different variables in the model, which creates room for  
diagnostic analytics. 
 
In terms of modeling strategies, historically, reservoir modeling methods evolved to describe the 
physics of fluid flow through porous media for pressure transient analysis and numerical 
simulation. Notably, complexities arise because of complex reservoir geometry (faulted and 
fractured reservoirs), hydrocarbon phase behavior, rock/fluid interfaces, and other nonlinearities. 
With the advent of high-performance computing, numerical simulation has become well-

TAKEAWAYS 
It is critical to properly use  
cloud technologies and database 
applications to organize data sets for 
effective analysis, analytics,  
and modeling. 
 
Business intelligence/analytics tools 
are used to achieve better 
visualization.  
 
ML applications can be used  
for classification and prediction 
problems. 
 
With the advent of high-performance 
computing, numerical simulation has 
become well-accepted as a viable 
modeling method for significant 
capital decisions. 
 
Risk and uncertainty in modeling are 
managed through integrated 
representations of uncertainty sources 
and formalisms for handling and 
modeling  
uncertainty. 
 
All models designed for classification 
and prediction purposes can be used 
for  
decision making. 



 

 
 

79 

accepted as a viable modeling method in the industry for significant capital decisions. However, 
three key challenges must be addressed when using numerical simulation: (1) The underlying 
physics governing fluid flow must be adequately captured and fit-for-purpose, (2) the reservoir 
characterization must be adequate for forward modeling methods, and (3) the time scale needed 
for computing efforts must be sufficient for decision-making purposes for optimization  
under uncertainty. 
 
On the topic of uncertainty and risk, decision analysis in field development is strongly related to 
risk because of the uncertainties in the data and modeling methods. Current approaches to deal 
with uncertainty focus on integrated representations of uncertainty sources and formalisms for 
handling and modeling uncertainty. 
 
Finally, all models designed for classification and prediction purposes can be used for decision 
making. For example, a reservoir characterization model can be used to identify sweet spots and 
infill-well locations. Sometimes, subject-matter expertise and physics can be incorporated into 
these models to enhance their classification and prediction capabilities.  

 
Current Status  
The data management strategies of most oil and gas companies with respect to their core 
applications have not yet been designed to handle big data or support analytics on a large scale. 
While database technologies have significantly improved, the systems that are being used are 
often decades old and were not built for rapid input/output operations or unstructured  
data management. 

 
In terms of visualization, business intelligence tools are primarily being used to understand 
reservoir and well performance using real field data and to identify underperforming producers 
and injectors so timely action can be taken (Popa and Cassidy 2012). Analyzing the quality of 
history matching in reservoir simulation is another common use. 

 
AI/ML methods are ideally suited for petrophysics and reservoir characterization applications 
that include multiple scales and types of data (from seismic to cores, logs). Since the earliest  
use of AI/ML methods in the petroleum industry, reservoir characterization has been a  
primary application area because of its inverse and data-driven nature. Lithology/ 
flow-unit identification and sweet-spot identification have been among the successful 
classification-type applications (Bestagini et al. 2017). These applications are currently being 
expanded to unconventional reservoirs, where they have more value (Hoeink and  
Zambrano 2017). 

 
In terms of prediction, AI/ML was first applied to reservoir rock and fluid property estimations 
from experimental data (e.g., logs, cores) to develop correlations (McCain et al. 1998; El-Sebakhy 
et al. 2007). AI/ML was then used with synthetic log generation, seismic inversion (Artun and 
Mohaghegh 2011), and the integration of multiple sets of data for sweet-spot identification 
(Ertekin 2021). Data-driven models have also been used successfully in the performance 
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forecasting of unconventional reservoirs (Esmaili 
and Mohaghegh 2016; Al-Alwani et al. 2019) in 
cases where decline curves have failed or 
forecasting is difficult because of heterogeneities.  

 
In terms of modeling strategies, ML techniques 
have been used successfully to create surrogates 
for reservoir simulation models (Amini and 
Mohaghegh 2019). This allows for complex 
reservoir studies that require many reservoir 
simulation runs to be accelerated. Other reduced-
physics and reduced-complexity modeling 
strategies—such as streamlines, capacitance-
resistance models, diffusive time of flight, model 
order reduction—have been applied to speed up 
reservoir performance predictions. 

 
On the topic of uncertainty and risk, the 
combination of many uncertainty variables and 
complex models that require long simulation runs 
requires the consideration of other factors, such 
as the selection of critical variables through 
sensitivity analysis, proxies of objective 
functions, and the aggregation of variables. In 
practice, with high-fidelity (physics-based 
simulation) models, optimization is seldom 
considered because of the great computational 
effort required and lack of feasibility. The 
computational speed of data-driven models 
makes the quantification and analysis of 
uncertainty very practical when compared to 
high-fidelity models. 

 
ML-based models have been successfully used 
for both classification and prediction purposes to 
make development decisions related to 
unconventional and mature conventional fields 
regarding the optimization of well count, 
location, trajectory, and completions; enhanced 
oil recovery; waterflooding; and the selection of 
candidate wells for restimulation (Kaushik et al. 
2017; Burton et al. 2019; Zhou and  
Lascaud 2019). 

 
One of the primary shortcomings of data-driven 
models is that the inner workings of these models 

TAKEAWAYS 
The data management strategies  
of most oil and gas companies have not yet 
been designed to handle big data or support 
analytics on a large scale, and the systems that 
are being used are often decades old. 
 
Business intelligence tools are being used to 
visualize reservoir and well performance. 
 
AI/ML methods are ideally suited  
for petrophysics and reservoir characterization 
applications that  
include multiple scales and types  
of data. 
 
AI/ML models have been developed for the 
prediction of reservoir properties and 
performance. 
 
Using ML techniques to quantify and analyze 
uncertainty has become more practical 
compared to using high-fidelity reservoir 
simulation models because of improved 
computational efficiency. 
 
There is growing use of ML models for 
operational decision making and optimization.  
 
One of the primary shortcomings  
of data-driven models is that the inner 
workings of these models are not well-
understood in the industry because of a lack of 
formal training and the availability of few 
subject-matter experts in the workforce. 
 
The goal of data-driven methods is not to be 
limited in finding structure in the data but to be 
able to interpret the data in terms of 
fundamental physical principles. 
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are not well-understood by most practitioners in our industry because of a lack of formal training 
and the availability of few subject-matter experts in the workforce. The lack of understanding 
results in a lack of trust in these models for decision-making purposes. Theoretical details such as 
the selection of the correct method, data partitioning, and error analysis (visual and quantitative) 
are typically overlooked. AI/ML tools are easily and freely accessible, and expertise is not typically 
required to apply AI/ML methods to a given data set. However, the maximum value from the 
models might not be obtained. 

 
Physical inconsistencies can also result from the application of a data-driven model. When pure data-
driven methods are used beyond their range of applicability to extrapolate data or in areas with sparse 
data, physically inconsistent results might be obtained. While the range of applicability can be 
limited, it is also important to ensure the results are physically meaningful, and often, pure data-
driven methods are incapable of providing physical insights. The goal is not to be limited in finding 
structure in the data but to be able to interpret the data in terms of fundamental physical principles. 
 
Significant advances have been made in the past few years in the areas of data analytics and 
modeling strategies and in their use for making reservoir engineering decisions. At a basic level, 
certain repetitive jobs involving data migration, event detection, and routine analysis are being 
automated, freeing up reservoir engineers to perform advanced analysis and interpretation. Several 
advanced algorithms are being developed in conjunction with reservoir physics to speed up 
reservoir modeling and forecasting. 
  
Evolving and Future Needs and Expectations 
Increasingly, oil and gas companies are recognizing the need to manage and store large quantities 
of data, which require very different solutions than those used previously. While nonrelational and 
cloud technologies are becoming more prevalent, there is a need for these solutions to work on 
more-specific oil and gas use cases. For example, time-series data are treated, processed, sampled, 
and retrieved very differently in oil and gas applications vs. in other industries, such as banking or 
healthcare. Databases are often optimized to support analytical processing and the use of ML or 
programming languages. Companies need to address metadata management, data governance, ML 
for optimization and performance management, and other aspects required for long-term strategic 
success. While cloud applications today are primarily characterized by lift-and-shift applications 
to the cloud with “best-fit” point solutions, the next-generation data management solutions will 
need to be natively built for the cloud platforms that can leverage the massive infrastructure. 

 
Although business intelligence tools are used for data analysis and visualization, there are few 
examples of their successful integration with AI/ML-based prediction. Business intelligence and 
knowledge management are performed on one application, and AI/ML model training and prediction 
are performed on another application. A successful integration of the two can increase the value of 
both components. A standardized, user-centric approach to ML, which will help with user 
understanding, will be necessary to drive the adoption of these methods. New tools are needed that 
provide a what-if analysis for ML models without the need for the user to write code. The best data 
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visualization tools will play a significant role in democratizing 
data and analytics, making data-driven insights accessible to 
users throughout an organization. Preferably, visualizations 
could be presented in a storytelling style to illustrate  
key insights.  

 
In terms of modeling strategies, current ML methods can be 
mostly classified as generic algorithms, which are applied 
to oil and gas data. However, work is ongoing to design 
custom algorithms specifically for oil and gas problems. 
These new algorithms should be far superior to standard 
out-of-the-box methods for applications such as seismic 
processing, interpretation, and production forecasting. 
Various approaches have been used to integrate physics into 
ML algorithms (Guo et al. 2018; Molinari et al. 2019), but 
a new generation of algorithms is now doing it very 
naturally (Raissi et al. 2017). These algorithms can 
transition smoothly between interpolation in a data-rich 
environment and physics-based extrapolation when needed. 
This approach also has the potential to replace standard 
reservoir simulation solvers because it is easier to 
parallelize an ML algorithm than the numerical methods for 
partial differential equations. ML strategies based on 
reinforcement learning could be adapted for reservoir 
engineering with the inclusion of both synthetic and real 
data. For example, for the determination of optimal 
development plans or well locations, ML models could be 
developed in which real examples and simulation results are 
combined in the training.  

 
Both data and model uncertainties need to be considered by 
any modeling paradigm. Several modern probabilistic ML 
methods for modeling and training (history matching) 
naturally lend themselves to multiple realizations of the same 
reservoir that systematically characterize posterior 
uncertainty (He et al. 2018). 

 
Proven, reproducible methods are necessary for applying 
data analytics to reservoir engineering. Although several 
innovative and promising papers, books, and reports have 
been published, they are often cryptic or hide the key steps 
and the associated data sets are not provided, and as a result, 
the methods are not reproducible. 

 
A new area of ML focusing on explainable AI is gaining 
momentum. The key objective is to produce explainable models while maintaining high accuracy, 

TAKEAWAYS 
Better handling of data organization and 
cloud applications is needed, in addition 
to specific data-storage solutions for oil 
and gas use cases.  
 
Business intelligence tools need  
to be integrated with AI/ML algorithms. 
 
User-centric visualization, preferably 
incorporating a storytelling style to 
illustrate key insights, is needed to assist 
human understanding.  
 
Custom AI/ML algorithms are being 
developed for the oil and gas domain 
and should be far superior to standard 
methods for applications such as seismic 
processing, interpretation,  
and production forecasting. 
 
Physical laws and relationships  
are being integrated into AI/ML 
algorithms. 
 
Both data and model uncertainties need 
to be considered by any modeling 
paradigm. 
 
Proven, reproducible methods  
are necessary for applying data analytics 
to reservoir engineering.  
 
Explainable AI/ML models that maintain 
high accuracy are being developed. 
 
Appropriate materials to help reservoir 
engineers understand analytics work 
products and determine their usability 
are urgently needed. 
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which would enable human users to understand, 
appropriately trust, and effectively manage the emerging 
generation of AI methods. A new set of methods in ML has 
been developed that provides more-meaningful insights and 
makes the data-driven models more transparent. Users 
should be able to understand why a model performed one 
task/computation and not another task/computation, when it 
succeeds or fails, when it can be trusted, and how to correct 
an error.  

 
Because of the large data volumes now available, reliable 
analytic methods that are consistent, reproducible, and 
explainable are needed to help reservoir engineers perform 
key functions such as surveillance, reservoir management, 
and field optimization. There is a clear need within the 
industry for a technical forum to provide an exhaustive 
discussion of the existing, emerging, and future components 
of data analytics applications in reservoir technology and an 
urgent need for appropriate materials to help reservoir engineers understand analytics work 
products and determine their usability. It would be immensely helpful if fit-for-purpose training, 
books, technical reports, and case studies were available to practitioners. This cannot be achieved 
without first addressing the skills shortage among practitioners. 
 
Critical Knowledge and Experience To Be Preserved and Transferred  
It is essential that data-driven conclusions preserve physical interpretability and clear 
relationships to well-understood phenomena. Therefore, preserving the knowledge and 
understanding of the physical system is important while applying the mathematical, statistical, 
and analytical techniques to the analysis of data. Uncertainty is a key aspect of dealing with 
reservoir data, and while it cannot be eliminated, it may be reduced by means of validation and 
physical consistency checks. This fundamental principle should be maintained, particularly 
when faced with “small” data. On the other hand, the notions that both physics-based and data-
driven approaches have their inherent limitations and that every approach (individually or 
integrated) serves a purpose should be established. 

  

TAKEAWAYS 
Physical laws and relationships  
for well-understood phenomena 
should be understood and honored. 
 
The use of validation and physical 
consistency methods when faced with 
“small” data should be established as 
an essential practice. 
 
Understanding of the limitations  
of physics-based and data-driven 
approaches should be emphasized. 
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Field-Scale Projects 
 
Contributors 

• Osman Apaydin (KODA Resources) 
• Tom Blasingame (Texas A&M University) 
• Mohan Kelkar (The University of Tulsa) 
• Faisal Rasdi (Equinor) 
• Vural S. Suicmez (Quantum Reservoir Impact)  

 
Introduction 
Since the discovery of the first oil and gas fields, operators have strived to optimize reservoir 
performance using available tools. In the past 20 years, the tools at an operator’s disposal have 
improved significantly, and the cost of collecting and storing high-resolution reservoir 
performance data has been reduced significantly. The technologies involved in integrating various 
sources and scales of data have improved, and the prediction of reservoir performance using 
reservoir simulation can be accomplished quickly while incorporating fine-scale geological details 
and numerous reservoir and fluid-related variables. 
 
We propose the following questions for discussion: 

• How have these tools helped the modern reservoir engineer better predict future reservoir 
performance? 

• Can the reservoir engineer of today quantify the uncertainties of future performance? 
• Would the reservoir engineer of today be more confident that his or her predictions and the 

associated uncertainties will capture the actual reservoir performance? 
• Has our ability to manage reservoirs improved, resulting in better recoveries at lower costs? 
• Do we have enough data and analysis to evaluate the potential of novel development 

options such as carbon capture? 

We need to understand the answers to these questions to better understand the technological needs 
of the future.   
 
History, Background, and Original Concepts 
Field management has been a consideration since the first oil field was discovered. The initial 
applications were based on the information that was available and the physical principles that could 
be applied. Even in the earliest days, it was recognized that the production from an oil field does 
not remain constant but declines. Initial field management practices involved the prediction of 
future performance by empirically fitting the historical data (crude history matching). The 
locations of new wells were determined first based on oil seeps and later on surface geology. The 
introduction of Darcy’s law and accounting for multiphase flow in reservoirs provided the physical 
principles necessary to better manage reservoirs using production data.  
 
Morris Muskat made the first effort to support the practice of field management with the 
foundations of physics. In his seminal book Physical Principles of Oil Production (Muskat 1949), 
Muskat states that “an investigation into the physics of fluid flow through oil bearing rocks yields 
quite definite information as to the degree to which one may successfully recover un-recovered oil 
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and the factors influencing the recovery.” Even today, this 
observation is valid. The purpose of field management has 
always been to recover “unrecovered” oil economically, and 
efficiently. Over time, better field management methods 
have evolved. We have used volumetric analysis, “zero”-
dimensional equations such as material balance, decline 
curve analysis, analytical procedures to estimate recoveries 
under waterflooding, and simple procedures for estimating 
gas recoveries under various mechanisms. Because of the 
analytical nature of many of these procedures, we rarely 
calculated uncertainties in our estimations of remaining oil 
and potential recoveries.   
 
With the introduction of reservoir simulation, our approach 
to field management has evolved. Although we have not 
abandoned the traditional, analytical approaches to capture 
reservoir performance and predict the future, for many 
reservoirs, these tools are used as complements to reservoir 
simulation. Reservoir simulation is a powerful tool because 
many of the restrictions of analytical methods are removed, 
such as assumptions of homogeneous properties. We also 
have an increased recognition that in addition to predicting 
future performance, we need to quantify the uncertainties 
associated with future performance.    
 
The introduction of reservoir simulation introduced an 
additional need to collect more data so that the reservoir 
description—which is an input in reservoir simulation—
could become more meaningful. The quality of collected data and the quality of reservoir 
simulation go hand in hand; the better the data quality, the better the simulation results. Over time, 
our ability to collect data has also improved, in two different ways: We now have higher-quality 
data for reservoir properties, and we have high-frequency data regarding reservoir behavior.   
 
When we examine the history of field management, we observe that now our tools are more 
sophisticated, our ability to simulate complex reservoir mechanisms is much better, our data 
collection in terms of quality and quantity has improved significantly, and our physical 
understanding of reservoirs has improved. At the same time, many of the physical principles 
articulated by Muskat remain valid and are still used; many analytical tools still retain their 
importance in understanding reservoirs and predicting their performance; and a desire to use the 
appropriate models for specific field management questions remains strong. It is well-understood 
that the most-sophisticated tool is not always the best tool to optimize field management.   
 
Current Status 
Historically, many reservoirs were modeled using a single description, and that description was 
used for reservoir management purposes. As the field management practice evolved, the 
importance of uncertainties in predicting future reservoir performance became better recognized. 

TAKEAWAYS 
Initial field management practices 
involved the prediction of future 
performance by empirically fitting the 
historical data. 
 
Muskat (1949) made the first attempt 
to incorporate physics into the 
practice of field management. 
 
The approach to field management 
evolved with the introduction of 
reservoir simulation, and the empirical 
and analytical tools are now used in 
complement. 
 
With the introduction of reservoir 
simulation, more data were needed to 
improve reservoir description, and 
higher-quality and high-frequency 
data are now available. 
 
The most-sophisticated tool is not 
always the best tool to optimize field 
management. 
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With the improvements in our understanding of 
uncertainties in reservoir characterization, an 
increased capability of simulators to incorporate 
more data and significant enhancements in 
computational power over the past few decades have 
given rise to more-stochastic approaches in field-
scale projects. Instead of relying on a single 
performance prediction, multiple future predictions 
are now routinely performed to quantify uncertainties 
in the future performance and possible outcomes.  

 
The reservoir management of field-scale projects is 
being assisted by several new and evolving 
technologies. The principal technologies include (1) 
the collection and assimilation of high-frequency, 
high-resolution data; (2) improved modeling 
techniques for integrating data from various 
disciplines; (3) faster computers that allow the 
simulation of high-resolution models; and (4) 
improved tools for monitoring changing field 
behavior. The new fields have been equipped with 
higher-resolution-data tools, including those for both 
surface and subsurface data collection. The resolution 
of every tool has increased, providing a detailed look 
at reservoir properties. In some instances, the data 
available can become overwhelming and end up being 
underused. Reservoir description methodologies have 
made significant progress in developing assimilation 
tools that allow the seamless integration of geological, 
geophysical, and engineering data. It is not unusual to 
see reservoir simulations of large fields being 
performed using multimillion cell models that account 
for small-scale variations in reservoir properties.  
 
The ability to store large quantities of data on cloud 
systems helps with data access, management, and 
reconciliation, and these systems provide almost-
unlimited space for data storage/archiving. Using 
modern metering and gauges, the exploration and 
production industry is accelerating its efforts to 
collect data at very high frequencies; for example, it 
is not unusual to find data are collected at a frequency 
of less than 1 minute, or even on the order of seconds. 
 
Decisions regarding the data to be collected and at 
what frequency are based on the biases of the 

TAKEAWAYS 
With the availability of robust simulators 
and improved understanding of 
uncertainties, more-stochastic approaches 
are being used in  
reservoir management decisions.  
 
A current challenge is to determine if a 
benefit actually exists from recent 
technological advancements and the 
increase in data quantities and how  
data analytics and AI have and could 
accelerate the extraction of knowledge 
from these data.  
 
Reservoir management is benefitting from 
new and evolving technologies such as 
improved modeling techniques that can 
integrate data from different disciplines 
and improved tools that monitor changing 
field behavior. 
 
Better surveillance tools are being used to 
collect data at high frequencies, and the 
large quantities of data can be easily stored 
on cloud systems. 
 
For a field-scale project to be successful, 
the key process is the integration and 
interpretation of information derived from 
all data sources. 
 
An effort is underway to significantly 
increase the number and types of 
subsurface measurements. 
 
Although large quantities of data are 
available, which should aid in field 
development and optimization, the 
industry is still searching for ways to  
cost effectively analyze these high-
frequency data and use them to  
improve reservoir management. 
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technical disciplines being deployed and have a 
significant effect on the outcome of studies. For a field-
scale project to be successful, the key process is the 
integration and interpretation of information derived 
from all data sources. This justifies spending project time 
on the gathering, formatting, and quality control of all 
data. In addition, the engagement of personnel in the 
production and operations groups becomes even more 
crucial during fast-paced developments because they are 
the ones who execute the placement of wells and well-
completion strategies and select artificial-lift methods. 
They should also be actively involved in the data 
collection and interpretation phases of a given project. 
 
To complement the large number of surface 
measurements (rates, pressures, temperatures) that are available, an effort is underway to 
significantly increase the number and types of subsurface measurements. In unconventional 
reservoirs, operators collect information such as microseismic, downhole temperature sensor, and 
downhole acoustic sensor data at high frequencies, and these types of data sets are on the order of 
terabytes and even petabytes. Although large quantities of data are available, which should aid in 
field development and optimization, the industry is still searching for ways to cost effectively 
analyze these high-frequency data and use them to improve reservoir management. These high-
frequency data are often qualitatively used, but rarely is an application seen where the data are 
used quantitatively. More collaboration between data scientists, engineers, and geoscientists is 
needed so that such data can be used quantitatively.   
 
It is well-established that field developments are influenced more by large-scale features than 
small-scale features, which is why understanding the large-scale features is much more important. 
Disruptive events provide significantly more valuable information than gradual changes do. For 
example, knowledge that a new well drilled in a field has encountered virgin pressure is a lot more 
important than knowledge of the slow decline of an already producing well. A quick water 
breakthrough in a producing well is much more critical to understanding the reservoir connectivity 
than a slow increase in fractional flow is.   
 
An ideal field development plan requires that such first-order effects be correctly identified before 
lower-order effects are considered. If any company has developed a systematic process where data 
importance and analysis are identified during field development planning, they should publish that 
process. Every field development study is unique, and the importance of data can vary depending 
on the geological environment, maturity of the field, and type of development process (primary 
depletion, waterflooding, enhanced oil recovery, carbon storage) that is being implemented. 
However, a generic description of how to identify first-order effects can be crucial in optimizing 
the time allocated to finish a field development study.  
 
In many situations, however, field development involves “comfort simulation,” where the decision 
about how to develop a field has already been made and the simulation results are used to justify 
the already existing plan. If indeed a “gut feeling” based on previous experience is important in 

TAKEAWAYS 
An ideal field development plan 
requires that first-order effects be 
correctly identified before lower-
order effects are considered.  
 
Having a decision-making process 
that follows a specified workflow  
to identify first-order effects is 
important for young engineers  
with limited experience. 
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making the correct decision, understanding how 
one arrives at that decision is critical for future field 
development projects. Young engineers with 
limited experience might not have the benefit of 
such experience. Thus, having a decision-making 
process that follows a specified workflow to 
identify first-order effects is important.  
 
Evolving and Future Needs and Expectations  
Recent technological advancements and the vast 
quantities of data now being collected should 
theoretically significantly increase understanding of 
how reservoirs behave and provide clear guidance 
on reservoir development. However, it is important 
to understand that not every newly collected data set 
will significantly benefit the field management 
process. Therefore, making judicious choices 
regarding which additional data to collect is also 
critical. Some type of cost/benefit analysis, either 
based on the historical performances of other fields 
or an analytical technique, would be useful. The next 
challenge is to determine how data analytics and 
artificial intelligence (AI) could accelerate the 
extraction of knowledge from these data. Simply 
having a very large data set available does not solve 
the physical challenges these reservoirs pose. Data 
from several disciplines will need to be combined, 
processed, and formatted in a manner from which 
knowledge can be extracted. In fact, that is the 
traditional “weak link” in the process: Engineers and 
geoscientists currently put 75–90% of their effort in 
a project toward data management, while most of 
this time is needed for the analysis, interpretation, 
and evaluation of such data.  
 
In addition, a significant challenge is null or 
missing data, which are very common in petroleum 
engineering. Typical examples of null data are data 
that were measured but lost, data that were 
measured in one well but not in others, and data that 
are unreliable because of flaring and/or 
underreporting. Therefore, algorithms that can fill 
in the null data using physics-based assumptions 
need to be developed.  
 

TAKEAWAYS 
Because data quantity alone is not enough to 
guide reservoir development, judicious decision 
making regarding the additional data to be 
collected is critical. 
 
Algorithms that can fill in null data using 
physics-based assumptions need to be 
developed. 
 
Although many tools are available to integrate 
information at various scales, the challenge still 
remains to collect data that can resolve small-
scale heterogeneities.  
 
Better quantification of uncertainties in future 
performance prediction would improve our 
ability to manage reservoirs and make sound 
economic decisions. 
 
Lookback studies comparing what was 
predicted vs. what was observed could be used 
to evaluate the success of new methods. 
 
Reservoirs could be better managed if we were 
to have an improved understanding of the 
reservoir heterogeneities and important 
reservoir mechanisms. 
 
Reservoir seals need to be better understood 
for injection processes. 
 
Significant advances have been made in 
developing reservoirs to store CO2 through 
carbon capture, utilization, and storage, but 
more understanding is needed before large 
aquifers could be used. 
 
Expertise in reservoir management is needed to 
decide which reservoir features and behaviors 
are necessary inputs for the machine-learning 
process to predict future performance with 
reasonable certainty. 
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Although many tools have been developed to integrate information at various scales, not much has 
been accomplished in terms of collecting data that can resolve small-scale heterogeneities. As an 
example, even though simulation techniques have improved, our ability to capture hydraulic fracture 
characteristics in a horizontal well (e.g., the distribution and extent of natural vs. hydraulic fractures 
at each stage) remains limited. Even with improved tools, our challenge in the future will be to figure 
out how to capture small-scale details about a reservoir at subsurface conditions so that these details 
can be incorporated into the reservoir modeling process. High-resolution seismic and near-wellbore 
monitoring and measuring tools could perhaps be used to resolve such details. By combining small-
scale subsurface characteristics from various disciplines into improved integrated tools, our ability 
to predict the future performance of a reservoir could be significantly improved.   
 
Even though our ability to predict future performance incorporating the associated uncertainties 
has significantly improved, we still lack systematic processes for assessing our success in 
predicting future performance. That is, how well were our uncertainty predictions able to 
successfully capture the actual future performance? Looking back at an uncertainty prediction 
could guide us regarding how successful we will be in predicting future uncertainties. The goal of 
uncertainty prediction is twofold. First, the predicted range of uncertainty should be such that the 
actual performance falls between that range. Second, the uncertainty range should be as narrow as 
possible so that these ranges can be meaningful in making sound economic decisions. If the actual 
performance falls outside the range of uncertainty, clearly our ability to quantify uncertainties is 
not sound. If the uncertainty range is too wide, it may hamper us from making good economic 
decisions. We are seeing efforts in the industry to address these questions. Post-auditing—
comparing the actual performance with the predicted performance—is much more common today. 
Because of improved computational speeds, it is possible to generate multiple history-matched 
reservoir descriptions, which can better quantify the uncertainties and generate predictions within 
reasonable ranges of the actual performance. However, currently, the history matching of multiple 
realizations followed by the prediction of uncertainties in future performance is mostly restricted 
to large multinational companies. It would be advantageous to the industry if this particular 
methodology became much more commonplace among companies of all sizes.    
 
Reservoirs could be better managed if we were to have an improved understanding of the reservoir 
heterogeneities and important reservoir mechanisms, which drive flow behavior. For conventional 
reservoirs, the physics of most flow processes is well-understood; however, we need to improve our 
ability to gauge and quantify the interaction between reservoir heterogeneities and the flow process. 
For unconventional reservoirs, many uncertainties remain with respect to reservoir flow mechanisms 
considering that we are not even sure if Darcy’s law is applicable under certain conditions.   

 
For injection processes, the reservoir seals also need to be better understood because seal capacity 
affects the maximum injection rate. Better characterization of the reservoir seal should be a focus 
in future data acquisitions. Leveraging geologic information and advanced seismic acquisition and 
processing could be useful in determining the seal capacity. Time-lapse monitoring coupled with 
automated analysis could detect injectant pathways and identify early anomalous behavior. 

 
Significant advances have been made in developing reservoirs to store carbon dioxide (CO2) 
through carbon capture, utilization, and storage (Bryant 2007; Feder 2019). Potential storage 
options include depleted fields, while other opportunities exist for large aquifers. In these cases, 
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not only do the reservoir properties need to be 
characterized, but an understanding of the strata above 
the reservoir is also required to estimate the CO2 
storage capacity. For large aquifers, before the 
injection of a large quantity of CO2 could become 
feasible, issues such as induced seismicity, achieving 
solubility of CO2, the impermeability of overlying 
formations, the leakage of wellbores, pressure changes 
in the formation, and the mineralogy of the formation 
and its potential for interaction with CO2 must be better 
understood. These analyses will require integration 
between geoscience, engineering, operations, and even 
external stakeholders.  
 
With the advances in AI and machine learning, an 
argument is being made that data-driven technologies 
can be used in place of physics-based models. In many 
AI applications, the general argument for their use is 
that we can predict future performance without 
understanding the physical processes. As long as large 
quantities of data are available and the model can be 
trained using large quantities of data, the argument 
goes that the model will be able to predict when new 
information is fed into it. With advances in data 
gathering and high-frequency information, is it 
possible that even reservoir management and the 
decision making regarding it could be accomplished 
using data-driven technologies? That is, if sufficient data were collected from a reservoir and the 
history of that reservoir as well as those of several other reservoirs could be fed into machine-
learning and deep-neural-network algorithms, is it possible that the machine could predict the 
potential future outcome and the associated uncertainties without using physics-based models? 
Or, without using physics-based models, would it be difficult to capture and predict the future 
performance of a reservoir? Or, perhaps some combination of physics-based models and 
machine-learning algorithms could better predict the performance of a reservoir? These are all 
open questions for which we do not have answers. The application of machine learning to 
reservoir description and prediction has thus far provided mixed results, and success has been 
spotty. This could be due to the fact that without domain expertise and knowledge, machine-
learning applications are hard to use. In effect, expertise in both reservoir management and 
machine learning is needed to understand which reservoir features are necessary inputs to 
correctly assess the uncertainties and predict future performance. As the application of machine-
learning algorithms becomes increasingly common, these issues will come to the forefront of 
reservoir management.   
 
Critical Knowledge and Experience To Be Preserved and Transferred 
Hydrocarbon reservoirs are complex, and even with improved physical understanding, the large 
quantity of data that we typically gather still barely describes the actual nature of a reservoir. Thus, 

TAKEAWAYS 
Preserving and documenting actual field 
examples and the lessons learned are 
incredibly important for future reservoir 
management.   
 
The process of understanding  
and separating first-order effects from 
minor effects to make field development 
decisions must be documented. 
 
Better documentation is needed regarding 
how high-granularity data can be properly 
used to improve field management. 
 
A better understanding of which data  
to collect and which not to collect  
would be useful in improving the cost 
effectiveness of data collection. 
 
Successes as well as failures  
should be published.   
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predicting future performance on the basis of limited data 
is only part science; it is also part art, which can only come 
from experience. Preserving and documenting actual field 
examples and the lessons learned are incredibly important 
for future reservoir management.   
 
In any field management decision, the models we build are 
never about the truth of a reservoir. Rather, these models are 
simplifications or idealizations of a reservoir, but they may 
still be very useful for predicting future performance. 
Building an appropriate model requires understanding the 
first-order effects and ignoring second- and third-order 
effects. How to understand and separate the first-order 
effects only comes from prior experience, but we need to 
attempt to document such information.   
 
Because of increased computational power and an 
improved ability to collect data, large quantities of data 
with high granularity are being collected. We need better 
documentation regarding how these data can be properly 
used to improve field management. A better understanding 
of which data to collect and which not to collect would also 
be useful in improving the cost effectiveness of data 
collection. Field studies documenting failures as well as 
successes need to be presented so that we will better 
understand the best practices of field management.   
 

 
  

TAKEAWAYS 
PRMS, which was initially adopted  
in 2007, provides a systematic 
framework for classifying and 
categorizing resources. 
 
The 2018 updated version of PRMS 
provides the basis for a universal set of 
definitions and a classification system 
for petroleum resources that are used 
internationally for all applications. 
 
Government regulators (e.g., US SEC) 
have adopted definitions inspired  
by PRMS. 
 
SPE continues to disseminate 
information about PRMS through 
workshops, training courses, and 
supplementary documents. 
 
Technologies for forecasting 
production include material balance, 
numerical well and reservoir 
simulation, RTA, and DCA. 
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Reserves 
 
Contributors 

• Reggie Boles (DeGolyer and MacNaughton) 
• John Lee (Texas A&M University) 
• Joe Young (LaRoche Petroleum Consultants) 

 
Introduction 
Reserves estimation and the related production forecasting 
technologies play dominant roles in the fate of oil and gas 
exploration and production (E&P) companies. Stakeholders 
in these companies—decision makers, investors, and 
reserves analysts (who most certainly include reservoir 
engineers)—have a huge responsibility to identify and apply 
the best-available practices to this work. However, “best 
available” does not necessarily mean “most accurate”; 
adequate accuracy and the timely generation of results 
require appropriate compromises. Maintaining and 
developing tools and methods that move commensurately 
with a rapidly changing industry knowledge base, 
transferring knowledge of those methods, and strengthening 
the confidence of those that use the reserves estimates are 
key goals. 
 
History, Background, and Original Concepts  
Effective reserves analysis and reporting require, at a 
minimum, the use of a system for resources classification 
and categorization and reliable methods to forecast the 
future production of resources. The system for classification 
and categorization has evolved into the current Petroleum 
Resources Management System (PRMS), which has been 
widely accepted globally for use in all phases of the 
petroleum industry. SPE led the effort to develop this system 
but was assisted by many other professional societies in the 
industry. PRMS was adopted in 2007 by SPE, the American 
Association of Petroleum Geologists (AAPG), the World 
Petroleum Council (WPC), and the Society of Petroleum Evaluation Engineers (SPEE). 
 
SPE and its sister societies—AAPG, SPEE, WPC, the Society of Petrophysicists and Well Log 
Analysts (SPWLA), the Society of Exploration Geophysicists (SEG), and the European Association 
of Geoscientists and Engineers (EAGE)—approved in 2018 an updated version of PRMS (SPE Oil 
and Gas Reserves Committee 2018), which provides the basis for a universal set of definitions and a 
classification system for petroleum resources and is used by the industry internationally. In addition, 
government regulators, such as the US Securities and Exchange Commission (SEC), have adopted 
definitions inspired by PRMS. 
 

TAKEAWAYS 
Technologies for production 
forecasting continue to advance, led 
by the development of methods of 
specific interest in unconventional 
(low-permeability) reservoirs. 
 
Data analytics techniques are being 
increasingly applied in production 
forecasting.  
 
Training in the latest advances in 
production forecasting is widely 
available and offered by SPE, SPEE, 
and their sister societies. 
 
Training in PRMS is also widely 
available (virtually and in person) and 
offered by SPE, SPEE, and their sister 
societies. 
 
The challenge of transferring 
knowledge from retiring experts  
to younger professionals is a  
front-of-mind topic. 
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Since PRMS was initially adopted by the boards of directors of SPE and the other societies, SPE 
has disseminated information about PRMS and the update through workshops and training courses 
conducted worldwide. In addition, SPE has recorded a web-based series of training lectures for 
transmission to SPE sections, individuals, and reserves stakeholders throughout the world, even in 
remote locations. SPE committees are currently working on supplementary documents, including 
an update to the 2011 PRMS applications guidance document and a new “examples” document. 
 
Production forecasting, which provides the basis for reserves estimation, comprises a group of 
technologies almost as old as the petroleum industry itself, yet new technologies and approaches 
continue to add to the tool kit estimators can deploy. Common forecasting methods include 
production decline curve analysis (DCA), rate transient analysis (RTA), material-balance analysis, 
conventional gas and black-oil reservoir simulation, and compositional simulation for near-critical 
fluids, while storage and transport simulations in nanopores (such as in shale reservoirs) are being 
developed (SPEE 2016). 
 
Current Status 
Technology related to reserves estimation and evaluation has continued to advance, although much 
work remains to be done. Primary evolving technologies include RTA, reservoir simulation (Jones 
et al. 2016; Moinfar et al. 2016), and DCA (SPEE 2016). Low-permeability reservoirs have 
provided myriad opportunities to advance the technology of reserves estimation and analysis. The 
inclusion of modern and maturing data analytics techniques is becoming a common methodology 
within workflows for estimating and projecting reserves production. 
 
SPE and its sister societies, particularly SPEE, have provided training globally on production 
forecasting technologies. Production forecasting methods—including but not limited to data 
analytics, machine learning, and enhancements of more-mature technologies—continue to be 
featured in technical journals and at technical conferences and workshops. In addition, SPE and 
other organizations continue to conduct training throughout the world in the application and use 
of PRMS.  
 
It is also recognized that the industry is on the cusp of a transition, with a significant portion of the 
current workforce aging out through retirement in the coming decade. This challenge of 
transferring accumulated knowledge is a front-of-mind topic in all areas of the industry, and no 
less in the field of reserves and resources estimation. 
 
Evolving and Future Needs and Expectations 
While the system for resources management (PRMS) has progressed to a high level, continued 
diligence will be necessary to respond to changes in the industry and to improve the external 
understanding of the reliability and integrity of resources estimates (Olsen et al. 2011). 
 
E&P companies have been criticized recently (particularly by the investment community) for their 
optimistic and overconfident estimates of ultimate recovery in low-permeability resources, such 
as shales (Miller et al. 2017; Elliott 2019; Matthews et al. 2019; Olson et al. 2019). The criticisms 
included but were not limited to (1) the improper application of traditional DCA methodology, 
especially in the choice and application of Arps b-factors during transitional and transient flow 
and in the application of terminal decline rates; (2) the improper construction and application of 
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typical-well production profiles (i.e., type wells or type 
curves); (3) an improper or a lack of application of 
uncertainty analysis; (4) a failure to account for well-to-
well interference in forecasting; and (5) a failure to 
account for the negative impact of multiphase flow (e.g., 
gas/oil, gas/oil/water). Confronting these criticisms and 
improving the methods applied are challenges that must 
be addressed. 
 
Potential solutions will include an improvement in the 
understanding and proper application of the familiar Arps 
method. However, additional methods should also be 
improved and more broadly applied, such as the 
incorporation of simulation modeling earlier in the 
process of evaluation and RTA where applicable (Collins 
and Ilk 2015). 
 
The dominant method for forecasting in ultralow-
permeability reservoirs remains production DCA. 
Although many replacements for the Arps decline model 
have been suggested, none have proved to be 
significantly more reliable for forecasting. Nevertheless, 
much remains to be learned about the proper application 
of the Arps model and similar decline models for 
forecasting in reservoirs with limited production histories 
and with expected future complications such as 
multiphase flow, well interference, and pressure-
dependent formation and completion properties. 
 
Full-physics simulation models (including storage and 
transport in nanopores) are evolving for use in longer-
term forecasting for ultratight reservoirs, and they may 
be approaching the commercial-application stage (Baek 
and Akkutlu 2019). These models will be useful for 
calibrating and applying rapid but approximate empirical 
and analytical models that are based on simplifying 
assumptions. However, understanding how to apply the 
results of this type of forecasting to a categorization of 
reserves will have to progress in accordance with these 
methods. In general, an earlier application of simulation 
modeling could be beneficial, despite the obvious caveats 
and uncertainties inherent in early application. 
 

TAKEAWAYS 
PRMS (as curated by SPE and associated 
professional groups) must be 
continuously reviewed for potential 
updates and modernization. 
 
Advances in production forecasting 
should be applied to improve forecasts 
and enhance credibility with the 
investment community. Forecasting 
needs to go beyond the unquestioning 
reliance on the traditional Arps 
hyperbolic decline model. 
 
Improvement in the construction and 
application of more-reliable typical-well 
production profiles (i.e., type wells or 
type curves) is also essential for 
credibility with investors. 
 
Production forecast and reserve 
estimation methods, such as DCA and 
RTA, need further improvements to be 
used for multiphase flow, well 
interference, and pressure-dependent 
formation and completion properties. 
 
The development (and earlier 
application) of full-physics simulation 
models for forecasting in unconventional 
reservoirs is required for longer-term 
forecasts.  
 
The industry, with SPE as a key player, 
will be called on to develop better 
training programs that incorporate a 
recognizable purpose and applications. 
 
The experience and knowledge  
of the soon-to-be-retiring professionals 
will be important resources to capture 
while they are still available. 
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RTA as a technology for forecasting and reserves estimation 
is mature in its development. However, it faces challenges in 
modeling multiphase flow, including gas/oil flow in 
retrograde-gas reservoirs, oil/gas flow in volatile-oil 
reservoirs, and gas/oil/water flow in other reservoirs (Moinfar 
et al. 2016). The basic approach has been to adapt analytical 
solutions for single-phase flow to more-complex multiphase 
flow situations using pseudofunctions. However, practical 
problems that need to be overcome include obtaining 
trustworthy reservoir description data, such as relative 
permeability relations, for use in these pseudofunctions. 
 
A broad challenge in production forecasting and reserves 
estimation in both conventional and unconventional 
reservoirs is the lack of consistent knowledge regarding the 
application of currently known recommended practices, as 
lacking in rigor as they may be. This problem is easy to state 
but more difficult to resolve. The industry will need to do a 
better job of informing practicing reserves analysts and 
reservoir engineers about the strengths and limitations of 
currently available approaches. This could be accomplished 
by enhancing our efforts to educate (rather than simply train) 
users to comply with regulations, forecast with acceptable 
accuracy, and estimate reserves in ways that provide 
confidence to all stakeholders in petroleum E&P. The SPE 
training courses, for example, reach only a small fraction of 
practicing engineers, and the reasons for this might include 
the cost and travel difficulties, and perhaps even 
indifference. The industry, and SPE in particular, may be called on to broaden its training outlets 
(in person and virtually), provide cost offsets (such as free courses and scholarships), and add 
cohesion and purpose to the training structure to make the training more inviting to and useful for 
a broader population.  
 
The exiting of experienced professionals from the industry because of retirements will only add to 
the challenge of disseminating accumulated knowledge gained through experience. However, as 
the daily work responsibilities of these retiring professionals lessen, there will be opportunities to 
support and incentivize mentoring and direct knowledge transfer (such as through courses, 
conference speakers, and in-house corporate training) using this great source of experience. 
 
Critical Knowledge and Experience To Be Preserved and Transferred 
Resources classifications and definitions are fundamental, but as history has taught, they must be 
carefully tended and supported without pause. Beyond just the learning of definitions, the 
application of theory and constructs is always important. Experience cultivates skill in applying 
learned principles, and the dissemination of those learnings will be imperative.  
 

TAKEAWAYS 
Resources classifications and 
definitions, and how to apply 
principles in specific situations,  
are key elements of the reserves-
estimation practice. 
 
The specific methodologies used  
in production forecasting and 
reserves estimations should always 
be presented and taught with the 
underlying concepts, assumptions, 
and limitations. 
 
Methods and best practices  
of estimating reserves 
deterministically and probabilistically 
should be documented. 
 
Regardless of whether deterministic 
or probabilistic methods are used in 
resource evaluation, the importance 
of assessing uncertainty should be 
emphasized. 
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Preserving the concepts underlying the applications of specific methodologies in a reserves 
analysis is an area in which professional societies can play a vital role. In the case of petroleum 
reserves estimation, SPE and associated industry groups should be leaders in accumulating and 
distributing the underlying knowledge required.    
 
This will span the range of quantification methods, including both deterministic and probabilistic 
approaches. The key to both method types is the proper assessment of uncertainty. Whether the 
uncertainty is stochastic or scenario-based, an evaluator will need the tools to assess the uncertainty 
involved regarding the inputs as well as the outputs (SPEE 2010; McLane and Gouveia 2015). 
 
The key to any estimate of resources is a time-based forecast of those volumes. The economic 
viability, capital allocation, and future profitability of resources, fields, and companies rely on the 
reasonable accuracy of such forecasts. This applies to conventional and unconventional resources, 
with each subject to specific complexities. The beneficial effects of collective knowledge and 
experience can be used to instill awareness of both the appropriate application and the limitations 
of a given method of forecasting resources. 
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Project Economics 
 
Contributors 

• Bernadette Johnson (Enverus) 
• Basak Kurtoglu (Quantum Energy Partners) 

 
Introduction 
The availability of inexpensive and reliable energy has 
been an important driver for the economic growth and 
wealth of nations around the world. Fossil fuels—including 
coal, oil, and natural gas—have been the key energy 
resources supporting the unprecedented transformation of 
civilization since the 18th century.  
 
The global macroeconomic environment for energy has 
changed significantly over the past 15 years. The 
unconventional revolution in the US and the discovery of 
vast natural-gas resources around the world have had far-
reaching implications for geopolitics, energy commodity 
prices, and the transport and flow patterns of energy 
commodities worldwide. Additionally, the dramatic 
change in supply and demand fundamentals, increased 
public awareness of climate change, and interest in 
alternative energy sources have affected capital markets 
and the investor appetite for oil and gas. 
 
The tools used in economic evaluation and decision making 
are outside the scope of this green paper, and the technical 
data used in project economics have been covered in 
previous sections. Rather, this section discusses the 
macroeconomic environment affecting oil and gas projects. 
It is intended to bring closure to the green paper by underscoring the ultimate objective of all 
reservoir activities and highlighting the importance of socioeconomic and political conditions in 
what is typically considered to be a purely technical field.  
 
History, Background, and Original Concepts 
The precarious stability of energy economics, with its strong interdependence on global political 
and socioeconomic stability, has made predicting and planning for the future an almost-daunting 
task. Because of this difficulty, energy economists have developed tools to guide energy 
investments and resource development strategies at the company and national levels.  
 
It should be noted that until recently, the following market dynamics prevailed: 
• Global energy markets and prices were largely controlled by OPEC and its bigger producers.   
• The global spare supply capacity, or the supply available to backstop short-term growth or 

unplanned outages, was primarily held by OPEC.   

TAKEAWAYS 
Global political and socioeconomic 
instability influences commodity prices 
and therefore energy economics.   
 
Until recently, global supply was 
heavily influenced by OPEC and the 
national oil companies of its member 
states. Demand growth was centered in 
developed economies. 
 
An era of hydrocarbon scarcity—when 
it was believed that global  
oil and gas reserves were being 
exhausted faster than they could  
be replaced—existed for decades and 
ended in the early 2000s.  
This dynamic drove investment 
decisions, the valuation of companies, 
and energy policy.  
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• Supply was sourced from conventional 
reservoirs, and projects consisted of long 
lead-time investments requiring significant 
capital. Exploration efforts were risky and 
often unsuccessful.   

• Until the early 2000s, it was thought that 
global oil reserves were being exhausted 
faster than they could be replaced and the 
market was running out of oil and gas; the 
reaching of peak oil was believed to be 
imminent. 

• New global supply discoveries were 
dominated by major oil companies or 
national oil companies instead of small or 
independent operators.      

• Demand growth was primarily occurring in 
developed economies. 

• Economic growth and low-cost energy were 
encouraged over the minimization of climate 
and environmental impacts. In addition, the 
climate impact was not fully understood or 
widely accepted.  

Current Status 
The US unconventional revolution has had one of 
the greatest impacts on the energy industry so far 
this century. In less than 15 years, between 2005 
and 2020, US crude and condensate production 
grew from 5 million B/D to more than 10 million 
B/D (US Energy Information Administration 
2021). (However, this number is significantly less 
than the observed peak in November 2019 of 
12.966 million B/D and reflects the crude 
production drop caused by the COVID-19 
pandemic crude market collapse.) During the 
same period, gross natural-gas production grew 
from 55 Bcf/D to more than 104 Bcf/D (US 
Energy Information Administration 2021). 
Because this production growth far outpaced 
domestic demand growth, the US is now a net 
exporter of natural gas, crude/condensate, and 
natural gas liquids (also referred to as liquid 
petroleum products). The year 2020 will be 
notable for the significant upheaval in oil and gas 
markets. Both the severe reduction of demand 
because of COVID-19 and the price wars have 

TAKEAWAYS 
Between 2005 and 2020, US crude and 
condensate and gross natural-gas production 
doubled, and the US is now a net exporter of  
natural gas, crude-oil/condensate, and natural 
gas liquids.  
 
Growth in supply, the development of new 
resources, and the relatively less growth in 
demand have resulted in a dramatic drop  
in prices, leading us into the current era  
of abundance. 
 
Because of persistent low prices, investors have 
shifted their focus from growth to demonstrating 
capital efficiency, scrutinizing balance sheets, and 
demanding a return  
on capital.   
 
Investment is now being affected by concerns 
about climate change and policies generally 
supportive of renewable energy.  
 
DCF models are the standard method for 
evaluating project economics and benchmarking 
assets.   
 
In the current market, investors expect E&P 
operators to generate free cash flow and 
generate strong full cycle and corporate returns.  
 
Private companies must build businesses 
focusing on cash-flow growth. 
 
Global producers will need to invest in both 
unconventional and conventional resources, 
creating both opportunities and risks. 
 
Several factors must be considered for each 
project when designing a company strategy  
or portfolio mix, including operational 
experience, political risks, and expected  
future commodity prices. 
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collapsed prices and changed supply and demand levels in the short to medium term. However, 
the longer-term dynamics presented in this section will likely prevail.   
 
Coinciding with the growth of US production in the past 15 years, significant conventional natural-
gas resources were discovered and developed around the world, in Qatar and Australia, for 
example, with more planned projects underway. This growth in supply, the development of new 
resources, and the relatively less growth in demand have resulted in a dramatic drop in the price 
for crude, natural gas, and natural gas liquids, and we are now in a time period that is often referred 
to as the “era of abundance.” 
 
This era of abundance has also resulted in a significant paradigm shift in the way oil and gas are 
valued by investors. When the market believed that the world was running out of hydrocarbon 
resources, investors thought that commodity prices would trend up over time as the cheaper 
resources were exhausted and the use of new, more-expensive resources became necessary. This 
resulted in both public and private investors encouraging exploration and production (E&P) 
operators to increase production volumes, often by taking on debt to fund that growth. However, 
now that low prices have persisted for more than 10 years for natural gas and more than 6 years 
for crude/condensate, investors have shifted their focus from growth to demonstrating capital 
efficiency, scrutinizing balance sheets, and demanding a return on capital.   

 
The investor appetite for oil and gas has also been affected by concerns about climate change and 
the growth of renewable energy. The importance of this change to capital markets and the investment 
landscape cannot be overemphasized; however, it must also be noted that capital markets, like 
commodity markets, are cyclical, and the most-important factor that drives investors is returns, 
which are largely a function of commodity prices. An improvement in commodity prices would 
increase returns, improve the balance sheets of E&P operators, and result in additional oil and gas 
fields beginning to generate profits. As a result of price increases from the 2020 lows and 
conservative capital-expenditure programs, many US producers have reported improved balance 
sheets and financial metrics. In addition to commodity price increases, technological advancements 
and changing geopolitical dynamics promise to reshape oil and gas markets in the future. 
 
While the macroeconomic environment for energy continues to evolve, the fundamental valuation 
methodologies for both conventionals and unconventionals have not changed. The most-common 
method to construct realistic and accurate valuations is the discounted cash flow (DCF) model 
(Reynolds 1959). When a decision involves buying, selling, or funding an asset through external 
means, a market-based approach can also provide a relative value of the asset on the basis of how 
investors price similar assets. The typical thought process underlying petroleum valuations 
includes the following:  

• To value an existing asset for internal purposes: What is the value of my asset? 
• To value an asset’s reserves for external reporting purposes (e.g., to the US Securities and 

Exchange Commission): How will investors value my asset? 
• To value an operational decision: Should I perform this operation? 
• To value an asset under consideration for acquisition: Should I buy? 
• To value an asset under consideration for disposition: Should I sell? 
• To value a funding decision: How much should I invest and at what structure?  
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Conventional assets generally take longer to develop and by nature are less flexible, thus allowing 
for less responsiveness to variations in commodity prices. There are fewer companies around the 
world with the scale and access to capital required to bring a conventional project to life, and those 
companies are often either national oil companies or major global companies.   

 
For conventional reservoirs, multiyear reservoir characterization, subsurface and surface 
modeling, history-matching, and simulation studies are typically undertaken to estimate original 
hydrocarbons-in-place, predict well performance, and eventually estimate the value of the asset. 
The fundamental reservoir engineering applications are still valid in the valuation of conventional 
assets. However, with the advancement of high-performance computing and real-time access to 
operational data, asset valuations are more dynamic than ever.  

 
Unconventional assets, by nature, contain more geologic variation, even within a basin or play, 
and therefore vary in terms of volume predictability and economics. For more than a decade, public 
upstream companies meaningfully outspent their cash flows as they explored shales. Their primary 
focus was on production growth and long-term inventory life rather than generating free cash flow. 
During this time, private operators invested minimal capital to delineate acreage to prepare for 
asset divesture. However, the upstream business model has rapidly changed since the COVID-19-
related downturn. In the current market, investors expect E&P operators to generate free cash flow 
and strong full cycle and corporate returns. Private companies are expected to do more than “prove 
and flip.” For private companies to find their exit, they also focus on building businesses focusing 
on cash-flow growth. This requires that private operators take a full-field development approach 
instead of operating under a minimal delineation program. For the first time, there is a common 
strategy regarding the allocation of capital to develop these reservoirs regardless of whether the 
company is public or privately held.  

 
For unconventional assets, the most-common building block of DCF models is single-well 
economics, which can then be aggregated into a full development model to value an asset within 
a company or value an entire company. This approach worked well early in the unconventional 
era. With approximately 150,000 horizontal wells drilled in unconventional plays to date according 
to state and federal regulatory filings and drilling permits, the industry has realized that every well 
is unique and many variables can influence well performance and economics. The role of 
technology and big data is now more important than ever because optimizing field development is 
an extremely complex issue given the interaction of reservoir quality, stacked development, 
completion techniques, operational procedures, spacing, and timing. With operators in 
development mode, the intrinsic value of every asset hinges on the operator’s strategic approach 
to pad, cube, staggered, and sectional planning/execution and managing parent/child issues. A 
comprehensive subsurface analysis is required to accurately predict well and field performance 
and characterize future inventory. Without the correct engineering and geoscience tools and 
approaches, the industry is inevitably at risk of overestimating or underestimating the productivity 
of such reservoirs, which is ultimately what drives asset valuation and project economics.   

 
The strategy of oil and gas producers and their portfolio-construction decisions have evolved in 
recent years alongside the US unconventional revolution. There are now two distinct types of 
investments: lower-capital unconventional onshore wells that take less than 30 days to drill and 
can be brought online within months and more-capital-intensive conventional projects that require 
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years to discover, test, and finally bring online. Additionally, investors can balance their portfolios 
from a commodity perspective and select oil, gas, or a combination. 
 
Unconventional assets are unlikely to ever meet ongoing energy needs. The lower overall volume 
growth rate in the US simply means the US supply will not be sufficient on its own to balance the 
market. Therefore, global oil and gas producers will need to invest in both unconventional and 
conventional resources in the future. These two competing investment types will create both 
opportunities and risks for national oil companies, major global oil companies, and shale producers 
as they define their own strategies and construct their portfolios.   

 
Today and going forward, most major oil companies are investing in both unconventional and 
conventional projects all over the world, while some are leaving the space and focusing only on 
the transition to alternative energy sources. There are also independent unconventional operators 
in the US that have taken positions in conventional projects abroad, primarily in natural gas. In 
addition, many companies have diversified and are concurrently investing in multiple 
unconventional and conventional projects.   

 
Several key factors must be considered for each project when designing a company strategy or 
portfolio mix, including 

• Technical and operational experience  
• Political and business risk in a specific region or country 
• Workforce and labor accessibility in a specific region or country 
• Expected future commodity prices 
• Desired commodities mix exposure 
• Land or acreage position 
• Midstream and downstream infrastructure required to produce assets and the ability to 

integrate the business to mitigate risks 
• Ability to account for unforeseen occurrences, such as COVID-19 and the Macondo 

blowout and explosion  
• Environmental, social, and governance (ESG) and other nonfinancial metrics demanded 

by investors and shareholders 
• Competing energy sources to meet net-zero goals or emissions reductions  
 

It is important to note that much of what has been discussed thus far applies to both unconventional 
and conventional projects, but the scale, risks, and timelines are often different. 
 
Evolving and Future Needs and Expectations 
Going forward, there are several key market dynamics to watch that will drive prices and, 
therefore, the investor appetite for oil and gas.   
 
The first is demand growth trends for crude and natural gas. Because it is unclear if or when 
demand will return to pre-COVID-19 levels, this topic is under debate. Air-travel demand has 
improved since 2020, but it is expected that it will take years to reach pre-pandemic levels, and 
global macroeconomic growth is being challenged. Transportation fuel represents the largest 
component of crude demand, and the growth of electric vehicles will influence this demand in the 
future. How much demand for refined products will be displaced and when?  
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The longevity of US unconventional resources will remain 
a key factor in overall commodity flow patterns and prices. 
Specifically, how long can US production continue to grow, 
in what quantity, and at what price? This is notwithstanding 
the current shorter- and medium-term impacts resulting 
from COVID-19 and the subsequent price collapse.  

 
Growth in renewables, particularly in developing nations 
where the majority of increased demand for hydrocarbons is 
expected to come from, should also be monitored. This 
growth will largely be sponsored by government policies 
that provide tax incentives, mandate certain infrastructure 
retirements, and further incentivize investment. Where and 
when will renewables grow as a percentage of the energy 
mix? How competitive from a returns perspective could 
renewables be as policies evolve, consumer preferences 
change, and costs begin to affect the general public? 
 
In addition, cheaper and longer-lasting batteries are being 
developed all around the world, and the required 
breakthroughs in physical chemistry are a question of when, 
not if. There is also growing investment in and operational 
activity surrounding carbon capture, utilization, and storage 
(CCUS) as policy-driven incentives are increasing globally 
to achieve net-zero goals by 2050.  
 
Geopolitics, trade wars, and currency wars also influence 
the market. Shortages in crude/condensate supply are 
common and often a result of political unrest, attacks on 
infrastructure, or economic instability. Trade and currency 
wars have increased over the past several years, and each 
event has had far-reaching impacts on the price of 
commodities and demand. Where and when will these 
events happen in the future? And how often? 
 
Before 2010, OPEC was a key driver of supply and price, but the group’s price-setting ability has 
been hampered in the current era of fundamental oversupply of crude/condensate, led by supply 
growth in non-OPEC countries. The pandemic forced significant cuts in the production levels of 
OPEC and their partners, along with those of other non-OPEC nations around the world. Large 
quantities of crude remain on the sidelines, and the timing of the return of this supply is uncertain.   
 
The final market dynamic to watch is the continued investment and research in enhanced oil 
recovery (EOR) in both the Middle East and unconventional plays, as well as the success of carbon 
dioxide EOR projects as part of CCUS initiatives supported by tax incentives. Will supply increase 
because of technological advancements in EOR, and how will the decarbonization of the upstream 
industry by means of CCUS affect the longevity of oil and gas production?    

TAKEAWAYS 
Demand growth trends for both  
oil and gas will be closely tracked and 
analyzed.  
 
The longevity of and ultimately  
the appetite for investment in  
US unconventional production 
resources will remain a key  
factor in overall commodity flow 
patterns and prices.  
 
The growth in renewables, particularly 
in developing nations, should be 
monitored. 
 
Technological advancements in  
the areas of battery technology  
and carbon capture are being 
researched around the world. 
 
Geopolitical risks and socioeconomic 
volatility will continue to influence the 
market. 
 
The final market dynamic to watch is 
the continued investment and 
research in EOR in both the Middle 
East and unconventional plays. 
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Critical Knowledge and Experience To Be Preserved 
and Transferred 
The valuation methodologies and technical approach used in 
project economics have not changed. DCF models are and 
will remain the standard methodology for evaluating 
projects quantitatively, although ESG metrics are now also 
being used to benchmark and compare projects. Successful 
energy projects rely on an integrated approach between 
technical/operational and commercial teams, and financial 
drivers, optimal drilling/completion/production techniques, 
and intangible factors like ESG must be considered to 
maximize project economics.  
 
Thus, while the fundamentals of project economics have not 
changed, it is important to note how global and local energy 
market dynamics, investor appetite, and the 
volatility/cyclical nature of commodity prices drive 
investment decisions and will continue to do so. Global 
market dynamics are continuously evolving as a result of 
macroeconomics, energy-transition initiatives, energy 
investments, asset valuations of unconventionals vs. 
conventionals, and portfolio constructions. The current era 
of abundance has resulted in a significant paradigm shift in 
the way oil and gas are valued by investors, and the 
sustained drop in commodity prices as a result of the new 
lower marginal cost of supply has forced a change in the 
capital markets that cannot be overstated.   

 
Investors now require capital discipline, pressure operators 
to generate free cash flow, and emphasize returns on 
investment, and these changes are significant and here to 
stay. In addition to the market changes already observed, 
investments in technologies like EOR in both conventional 
and unconventional plays and in new regions like the Middle 
East will continue, the market share from renewables as 
energy sources will continue to grow, and concerns about 
climate change will continue to reshape markets and 
influence commodity prices. In addition, the technological 
innovations that unlocked unconventional resources and 
fundamentally changed oil and gas markets are now being developed for technologies such as 
carbon capture and batteries.  
 
 
 

  

TAKEAWAYS 
DCF models are and will remain  
the standard methodology for 
evaluating projects quantitatively, 
although ESG metrics are now  
also being used.   
 
Successful energy projects rely  
on an integrated approach between 
technical/operational and commercial 
teams, and several factors must be 
considered to maximize project 
economics. 
 
While the fundamentals of project 
economics have not changed, global 
and local energy market dynamics, 
investor appetite, and the 
volatility/cyclical nature of commodity 
prices will continue to drive 
investment decisions.   
 
The current era of abundance has 
resulted in a significant paradigm shift 
in the way oil and gas are valued by 
investors, and the sustained drop in 
commodity prices has forced a 
change in the capital markets that 
cannot be overstated. 
 
The energy market continues to 
evolve, and changes resulting from 
renewables, climate change concerns, 
and technological innovations should 
be expected.  
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