Pressure Measurements Plus Simulation Help Differentiate Between Downhole Events

Fig. 1—Four typical pumps-off profiles.

Drilling-fluid thermal expansion, wellbore ballooning, and formation kick are similar in terms of surface observations such as pit volume gain. Each of these events, however, is solved in different ways. Treating wellbore ballooning the same way as a kick likely will result in losing the current borehole after days or weeks of unsuccessful operations. In this study, pressure-while-drilling technologies are combined with software simulations to differentiate drilling-fluid thermal expansion, wellbore ballooning, and formation influx during riserless drilling operations.

Wellbore Events

Thermal Expansion. Because mud density is dependent on temperature and fluid compressibility, volume gains or losses because of thermal effects may be substantial, especially in high-pressure/high-temperature and deepwater wells. Thermal expansion typically results in small volume changes and low flow rates because it takes time for the mud to heat up after circulation stops. Depending on the downhole conditions, however, muds can heat up sufficiently to produce significant flowback for a short period of time.

Formation-Fluid Influx. If the mud-weight hydrostatic pressure is insufficient to contain formation influxes, when the pumps are shut down, the loss of the frictional pressure created during pumping can allow formation fluid to flow into the wellbore, assuming the formation fluid has sufficient mobility. This is described as a kick, or formation-fluid influx. It is verified by performing a flow check and observing mud returns at surface over time to determine a trend in pit gain. A steady increase or accelerating trend will be interpreted as a kick, although, in many cases, the well will be shut in before a clear trend can be established.

This article, written by Special Publications Editor Adam Wilson, contains highlights of paper IADC/SPE 178835, “Differentiate Drilling-Fluid Thermal Expansion, Wellbore Ballooning, and Real Kick During Flow Check With an Innovative Combination of Transient Simulation and Pumps-Off Annular Pressure While Drilling,” by Zhaoguang Yuan, Dan Morrell, SPE, Aldrick Gracia Mayans, SPE, and Yahya H. Adariani, Schlumberger, and Matthew Bogan, Noble Energy, prepared for the 2016 IADC/SPE Drilling Conference and Exhibition, Fort Worth, Texas, USA, 1–3 March. The paper has not been peer reviewed.
This article is reserved for SPE members and JPT subscribers.
If you would like to continue reading,
please Sign In, JOIN SPE or Subscribe to JPT

Pressure Measurements Plus Simulation Help Differentiate Between Downhole Events

01 January 2018

Volume: 70 | Issue: 1


Don't miss out on the latest technology delivered to your email weekly.  Sign up for the JPT newsletter.  If you are not logged in, you will receive a confirmation email that you will need to click on to confirm you want to receive the newsletter.