ADVERTISEMENT

Rapid S-Curve Update Using Ensemble Variance Analysis With Model Validation

In the complete paper, the authors propose a novel method to rapidly update the prediction S-curves given early production data without performing additional simulations or model updates after the data come in. The approach has been successfully applied in a Brugge waterflood benchmark study, in which the first 2 years of production data [rate and bottomhole pressure (BHP)] were used to update the S-curve of the estimated ultimate recovery. To the authors’ knowledge, the proposed work flow, including the model validation and the denoising techniques, is novel. The proposed work flow is also general enough to be used in other model-based data-interpretation applications.

Introduction

As surveillance data are obtained from the field, the S-curves of the key metrics need to be updated accordingly. This is normally accomplished by a two-step approach. First, the data are assimilated through history matching to calibrate the model parameter uncertainties to obtain their posterior distributions. Then, a probabilistic forecast is performed on the basis of the posterior distributions of the parameters to update the S-curve of the key metrics. However, obtaining an S-curve update with the traditional approach can take weeks or months after the data come in. There is a need for rapid interpretation of the incoming data and update of the S-curve without going through a full-blown history-matching and probabilistic-forecast process.

Recently, the approach called direct forecast (also called data-space inversion) has been a focus of attention. In direct forecast, the statistical relationship between the measurement data and the business objective is established on the basis of simulation-model responses before the data acquisition. This direct relationship can then be used to rapidly update the prediction of the objective once the data become available.

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 185630, “Rapid S-Curve Update Using Ensemble Variance Analysis With Model Validation,” by Jincong He, Shusei Tanaka, Xian-Huan Wen, and Jairam Kamath, Chevron, prepared for the 2017 SPE Western Regional Meeting, Bakersfield, California, USA, 23–27 April. The paper has not been peer reviewed.
...
This article is reserved for SPE members and JPT subscribers.
If you would like to continue reading,
please Sign In, JOIN SPE or Subscribe to JPT

Rapid S-Curve Update Using Ensemble Variance Analysis With Model Validation

01 April 2018

Volume: 70 | Issue: 4

STAY CONNECTED

Don't miss out on the latest technology delivered to your email weekly.  Sign up for the JPT newsletter.  If you are not logged in, you will receive a confirmation email that you will need to click on to confirm you want to receive the newsletter.

 

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT