ADVERTISEMENT

Microseismic Analysis Identified Depletion Gap

The Challenge

The dynamics of full-field development for multi-target Midland Basin acreage have a tremendous impact on the total EUR per section. Depletion can be hard to model and results are often only clearly seen after a significant amount of wells has been drilled. Traditional models assume unrealistic fracture geometries and do not account for the amount of variability in the geology.

The Solution

Using a FracStar® surface array, acoustic data were acquired during the treatment of an eight-well pad in three target formations. Microseismic events and the created fracture network were imaged and allowed for a realistic reservoir model due to the accurate modeling of the discrete fracture network, distinction between propped and unpropped fractures, and the calculated permeability enhancement due to the treatment. Microseismic–based reservoir simulation was then used to estimate production and understand the interference between wells.

The Results

Microseismic-derived permeability enhancement distribution in a reservoir simulation workflow accurately calculated oil, gas, and water production rates. The model was calibrated using 6 months of production data. Pressure depletion results were used to evaluate wellbore spacing and showed a depletion gap between two wellbores.

...
This article is reserved for SPE members and JPT subscribers.
If you would like to continue reading,
please Sign In, JOIN SPE or Subscribe to JPT

Microseismic Analysis Identified Depletion Gap

MicroSeismic, Inc.

01 May 2018

ADVERTISEMENT


STAY CONNECTED

Don't miss out on the latest technology delivered to your email weekly.  Sign up for the JPT newsletter.  If you are not logged in, you will receive a confirmation email that you will need to click on to confirm you want to receive the newsletter.

 

ADVERTISEMENT

ADVERTISEMENT