Data & Analytics

Proxy-Based Metamodeling Optimization of Gas-Assisted-Gravity-Drainage Process

Unlike continuous gas injection and water-alternating-gas injection, gas-assisted gravity drainage (GAGD) takes advantage of the natural segregation of reservoir fluids to provide gravity-stable oil displacement.

jpt-2017-10-pda185701f1.jpg
Fig. 1—Schematic of the GAGD process.

Unlike continuous gas injection and water-alternating-gas injection, gas-assisted gravity drainage (GAGD) takes advantage of the natural segregation of reservoir fluids to provide gravity-stable oil displacement. The feasibility of carbon dioxide (CO2) GAGD was investigated for immiscible injection through equation-of-state compositional reservoir simulation with design of experiments (DOE) and proxy modeling to obtain the optimal future-performance scenario. After history matching, Latin-hypercube sampling (LHS) was used as a low-discrepancy and more-uniform DOE approach to create hundreds of simulation runs to construct a proxy-based optimization approach.

Introduction

Many enhanced-oil-recovery studies have been conducted for CO2-flooding optimization in real oil fields; however, to the best of the authors’ knowledge, no study has been made for GAGD implementation and optimization in a real oil field. To implement the optimization process, a full compositional reservoir simulation was constructed to evaluate the reservoir performance through CO2-GAGD flooding for 10 years of future reservoir prediction.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.